Объяснение:
r - радиус вписанной окружности, r = 12 см.
АВ = NP = 2r = 2 x 12 = 24 см.
СН - высота трапеции, СН = АВ = 24 см.
По теореме Пифагора в треугольнике НСD:
CD^2 = CH^2 + HD^2;
25^2 = 24^2 + HD^2;
625 = 576 + HD^2;
HD^2 = 49;
HD = 7 см.
Пусть NC = x см. Тогда по свойству касательных СК = NC = х см.
DK = DC - CK = 25 - x.
PH = NC = x;
DP = DH + PH = 7 + x.
По свойству касательных: DP = DК. Получим уравнение:
7 + х = 25 - х;
х + х = 25 - 7;
2х = 18;
х = 9.
NC = 9 см;
ВС = BN + NC = r + x = 12 + 9 = 21 см;
AD = AP + PD = r + 7 + x = 12 + 7 + 9 = 28 см.
Периметр трапеции:
P = AB + BC + CD + AD = 24 + 21 + 25 + 28 = 98 см.
Исправим условие: AO=√10 см
-----------------------------------------------------------------------------------------------------------------
Окружность касается AB в точке H
OH=3 см, ∠AHO=90° (касательная перпендикулярна радиусу, проведенному в точку касания)
AH=√(AO^2-OH^2) =√(10-9) =1 (см)
Центр окружности, вписанной в угол, лежит на биссектрисе угла.
△BHO - равнобедренный (прямоугольный с углом 45°), BH=ОН=3 (см)
AB=AH+BH =4 (см)
△ABC~△AHO (по двум углам, прямоугольные, ∠A - общий)
BC=OH*AB/AH =3*4=12 (см)
S(ABC)=AB*BC/2 =4*12/2=24 (см^2)