Точка А переходит в точку С по одной окружности, а точка В в точку Д по другой окружности, но чтобы это происходило одновременно, то есть отрезок АВ переходил в СД, окружности должны быть концентрическими (иметь общий центр). Точки А и С лежат на одной окружности, значит АС - её хорда. Одновременно ВД - хорда другой окружности. Из школьного курса известно, что диаметр, проведённый к хорде, делит её пополам, обратным следствием чего является то, что срединный перпендикуляр, восстановленный к хорде, проходит через центр окружности. Восстановив срединные перпендикуляры к хордам АС и ВД получим точку их пересечения. Это и будет центр двух окружностей или центр поворота.
PS Надеюсь как построить срединный перпендикуляр расписывать не нужно.
ответ: Д(6; 2; -1)
Объяснение: найдём координаты точки О - середины диагонали АС по формуле: Ох=(Ах+Сх)/2; Оу=(Ау+Су)/2;
Oz=(Аz+Cz)/2. Подставим данные координаты а формулу:
Ox=(2+4)/2=6÷2=3
Оу=(3+1)/2=4÷2=2
Оz=(2+0)/2=2/2=1
Итак: координаты О(3; 2; 1)
Так как координаты середины диагонали АС совпадает с серединой диагонали ВД, то:
Ох=(Ах+Дх)/2. Оу=(Ву+Ду)/2
3=(0+Дх)/2. 2=(2+Ду)/2
Дх=3×2. 2+Ду=2×2
Дх=6. Ду=4-2
Ду=2
Oz=(Bz+Дz)/2
1=(4+Дz)/2
4+Дz=2×1
Дz=3-4
Дz= -1
Координаты Д(6; 2; -1)