При пересечении параллельных прямых секущей образуется 8 углов двух величин: соответственные углы ∠1 = ∠5 ∠3 = ∠7, а так как ∠1 = ∠3 как вертикальные, то ∠1 = ∠5 = ∠3 = ∠7 = х и соответственные углы ∠2 = ∠6 ∠4 = ∠8, а так как ∠2 = ∠4, как вертикальные, то ∠2 = ∠6 = ∠4 = ∠8 = у Сумма односторонних углов равна 180°, например ∠3 + ∠6 = 180° Т. е. х + у = 180°.
Сумма двух углов 72°. Так как сумма не 180°, это могут быть только равные углы: х = 72° : 2 = 36° ∠1 = ∠5 = ∠3 = ∠7 = 36° у = 180° - 36° = 144° ∠2 = ∠6 = ∠4 = ∠8 = 144°
При пересечении параллельных прямых секущей образуется 8 углов двух величин: соответственные углы ∠1 = ∠5 ∠3 = ∠7, а так как ∠1 = ∠3 как вертикальные, то ∠1 = ∠5 = ∠3 = ∠7 = х и соответственные углы ∠2 = ∠6 ∠4 = ∠8, а так как ∠2 = ∠4, как вертикальные, то ∠2 = ∠6 = ∠4 = ∠8 = у Сумма односторонних углов равна 180°, например ∠3 + ∠6 = 180° Т. е. х + у = 180°.
Сумма двух углов 72°. Так как сумма не 180°, это могут быть только равные углы: х = 72° : 2 = 36° ∠1 = ∠5 = ∠3 = ∠7 = 36° у = 180° - 36° = 144° ∠2 = ∠6 = ∠4 = ∠8 = 144°
ВD=10√3см
<А=120°
<В=60°
<С=120°
<D=60°
Объяснение:
Дано
ABCD- ромб.
АВ=ВС=СD=AD=AC=10см.
BD=?
<A=?
<B=?
Розв'язання.
∆АВС- рівносторонній.
АВ=ВС, як сторони ромба.
АС=АВ, за умови.
АВ=АС=АС.
В рівносторонньому трикутнику кути усі рівні і дорівнюють 60°
<АВС=<ВСА=<ВАС=60°
Діагоналі ромба є бісектрисами кутів.
<ВСD=2*<BCA=2*60°=120°
Протилежні кути ромба рівні між собою.
<А=<C=120°
<B=<D=60°.
Діагоналі ромба перетинаються перпендикулярно та точкою перетину поділяються навпіл.
ВО=ОD
AO=OC.
AO=AC:2=10:2=5см
∆АОВ- прямокутний трикутник.
За теоремою Піфагора
ВО=√(АВ²-АО²)=√(10²-5²)=√(100-25)=
=√75=5√3см.
ВD=2*BO=2*5√3=10√3cм