Заметим, что в правильной четырехугольной пирамиде основание высоты совпадает с точкой пересечения диагоналей основания (точка О на рисунке). Следовательно, отрезок SO перпендикулярен плоскости ABC. Так как прямая AC лежит в плоскости ABC, то SO⊥AC (угол SOC прямой). Тогда SC можно найти из теоремы Пифагора для прямоугольного треугольника SOC. Нам понадобятся длины катетов SO и OC.
AC - диагональ квадрата ABCD. Значит, AC = AD*√2. OC = AC/2.
Диагональным сечением, очевидно, является треугольник SAC. Его площадь известна из условия. Зная ее и AC, находим SO.
Пусть ABCD – данный параллелограмм. Если он не является прямоугольником, то один из его углов A или B острый. Пусть для определенности A острый. Опустим перпендикуляр AE из вершины A на прямую CB. Площадь трапеции AECD равна сумме площадей параллелограмма ABCD и треугольника AEB. Опустим перпендикуляр DF из вершины D на прямую CD. Тогда площадь трапеции AECD равна сумме площадей прямоугольника AEFD и треугольника DFC. Прямоугольные треугольники AEB и DFC равны, а значит, имеют равные площади. Отсюда следует, что площадь параллелограмма ABCD равна площади прямоугольника AEFD, т.е. равна AE • AD. Отрезок AE – высота параллелограмма, соответствующая стороне AD, и, следовательно, S = a • h. Теорема доказана.
Чертеж и весь счет во вложении.
Заметим, что в правильной четырехугольной пирамиде основание высоты совпадает с точкой пересечения диагоналей основания (точка О на рисунке). Следовательно, отрезок SO перпендикулярен плоскости ABC. Так как прямая AC лежит в плоскости ABC, то SO⊥AC (угол SOC прямой). Тогда SC можно найти из теоремы Пифагора для прямоугольного треугольника SOC. Нам понадобятся длины катетов SO и OC.
AC - диагональ квадрата ABCD. Значит, AC = AD*√2. OC = AC/2.
Диагональным сечением, очевидно, является треугольник SAC. Его площадь известна из условия. Зная ее и AC, находим SO.
Дальше вычисляем SC.
ответ: 10 см.