М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
dol2711
dol2711
30.05.2021 16:11 •  Геометрия

Дан ромб, короткая диагональ которого равна стороне длиной 22 см. Определи скалярное произведение данных векторов:

1. CB−→−⋅CD−→−=

2. OA−→−⋅OB−→−=

3. BA−→−⋅BC−→−=


Дан ромб, короткая диагональ которого равна стороне длиной 22 см. Определи скалярное произведение да

👇
Ответ:
Для решения этой задачи, нам нужно знать некоторые понятия векторной алгебры. Вектор - это направленный отрезок, который имеет длину и направление. Векторы обычно обозначаются стрелками над буквами, например, AB→− обозначает вектор, направленный от точки А до точки В.

Скалярное произведение двух векторов AB→− и CD−→− обозначается как AB→− ⋅ CD−→− и определяется следующим образом:
AB→− ⋅ CD−→− = |AB→−| * |CD−→−| * cos(θ)

где |AB→−| и |CD−→−| - длины векторов AB→− и CD−→− соответственно, а θ - угол между этими векторами.

1. CB−→− ⋅ CD−→−:
В данном случае, вектор CB−→− можно рассматривать как вектор, идущий от точки С до точки В. Таким же образом, вектор CD−→− можно рассматривать как вектор, идущий от точки C до точки D.

Для нахождения скалярного произведения CB−→− ⋅ CD−→−, нам необходимо найти длины этих векторов и угол θ между ними. Для этого нам не хватает каких-либо данных, таких как длины сторон или углов ромба. Поэтому мы не можем решить эту часть задачи.

2. OA−→− ⋅ OB−→−:
В данном случае, вектор OA−→− можно рассматривать как вектор, идущий от точки O до точки A. Таким же образом, вектор OB−→− можно рассматривать как вектор, идущий от точки O до точки B.

Для нахождения скалярного произведения OA−→− ⋅ OB−→−, нам также необходимо найти длины этих векторов и угол θ между ними. Из условия задачи мы знаем, что в ромбе короткая диагональ равна стороне длиной 22 см.

Так как ромб является ромбом, то сторона ромба равна диагонали, деленной на √2:
AB = 22 / √2 = 22 * √2 / 2 = 11 * √2 см.

Теперь мы можем найти длины этих векторов:
|OA−→−| = |OB−→−| = 11 * √2 см.

Также нам нужно найти угол θ между этими векторами. В ромбе, угол между любыми двумя сторонами всегда равен 90 градусам. Поэтому θ = 90°.

Теперь мы можем вычислить скалярное произведение:
OA−→− ⋅ OB−→− = |OA−→−| * |OB−→−| * cos(θ)
= 11 * √2 см * 11 * √2 см * cos(90°)
= 121 см²

Таким образом, скалярное произведение OA−→− ⋅ OB−→− равно 121 см².

3. BA−→− ⋅ BC−→−:
В данном случае, вектор BA−→− можно рассматривать как вектор, идущий от точки B до точки A. Таким же образом, вектор BC−→− можно рассматривать как вектор, идущий от точки B до точки C.

Для нахождения скалярного произведения BA−→− ⋅ BC−→−, нам также необходимо найти длины этих векторов и угол θ между ними. Мы уже знаем, что длина стороны ромба равна 11 * √2 см.

Теперь мы можем найти длины этих векторов:
|BA−→−| = |BC−→−| = 11 * √2 см.

Так как это ромб, угол между любыми двумя сторонами также равен 90 градусам. Поэтому θ = 90°.

Теперь мы можем вычислить скалярное произведение:
BA−→− ⋅ BC−→− = |BA−→−| * |BC−→−| * cos(θ)
= 11 * √2 см * 11 * √2 см * cos(90°)
= 242 см²

Таким образом, скалярное произведение BA−→− ⋅ BC−→− равно 242 см².
4,4(36 оценок)
Проверить ответ в нейросети
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ