3 Через блоки, прикрепленные в точках А и В перекинута нить с подвешенными на них грузами P и P. (рис.6). Груз Р3, подвешен- ный на нити в точке С, уравновешивает грузы P, и Р.. Докажите, что ZACB=ZA+ZB, если известно, что АР
Углы при основании у равнобедренной трапеции равны, значит второй угол тоже 60°.
Так как при диагонали угол 30°, то 60-30=30°
Сумма всех углов 360°
360°-60°-60°=240°
240°:2=120° (остальные два угла
рассмотрим верхний треугольник с меньшим основанием. 180°-120°-30°=30°, следовательно два угла одинаковые. Это равнобедренный треугольник.
Если боковая сторона 4 см, то и меньшее основание тоже 4 см.
Рассмотрим треугольник, который образует диагональ, с нижним основанием трапеции. 180°-60°-30°=90°. Значит он прямоугольный, в котором боковая сторона 4 см - катет, лежащий против угла 30° и равен половине гипотенузы.
Большее основание трапеции является гипотенузой этого треугольника.
Окружность = 360° 1) 5+4 =9 столько частей в этих 360° Меньшая дуга 360:9*4=40°*4=160° Градусная величина этой дуги соответствует величине центрального угла ( на рисунке 1 это угол АОВ). Вписанный угол АСВ равен половине центрального угла. 160°:2=80° - под этим углом видна хорда из любой точки на дуге АСВ Если точку взять на дуге по другую сторону хорды, то угол, под которым она будет видна, равен 360°:9*5:2=100°. Но обычно имеется в виду острый угол. ------------ 2) 7+3=10 столько частей в двух дугах. 360°:10*3=108° содержит центральный угол КОМ ( второй рисунок) Вписанный угол МЕК равен половине градусной меры центрального угла. 108°:2=54° - под этим углом видна вторая хорда. (Или, если точка расположена по другую сторону хорды, 360:10*7:2=126°)
Углы при основании у равнобедренной трапеции равны, значит второй угол тоже 60°.
Так как при диагонали угол 30°, то 60-30=30°
Сумма всех углов 360°
360°-60°-60°=240°
240°:2=120° (остальные два угла
рассмотрим верхний треугольник с меньшим основанием. 180°-120°-30°=30°, следовательно два угла одинаковые. Это равнобедренный треугольник.
Если боковая сторона 4 см, то и меньшее основание тоже 4 см.
Рассмотрим треугольник, который образует диагональ, с нижним основанием трапеции. 180°-60°-30°=90°. Значит он прямоугольный, в котором боковая сторона 4 см - катет, лежащий против угла 30° и равен половине гипотенузы.
Большее основание трапеции является гипотенузой этого треугольника.
Большее основание равно 4*2=8 см
ответ: основания трапеции 4 см и 8 см.