1) В четырехугольнике ABCD точки E и F — соответственно середины равных сторон AB и CD . Серединные перпендикуляр к стороне AD пересекает серединный перпендикуляр к стороне BC в точке P . Докажите, что серединный перпендикуляр, проведенный к отрезку EF проходит через точку P .
2) В четырехугольнике ABCD серединные перпендикуляры к сторонамAB и CD пересекаются на стороне AD . Известно, что \angle A = \angle D . Докажите, что в четырехугольнике диагонали равны.
3) В квадрате ABCD даны точки E и F соответственно на сторонах AB и BC ,причем \angle AED = \angle FED . Докажите равенство EF = AE + FC
так???!!!
В прямоугольном треугольнике АКС угол К равен 60° (дано). =>
∠САК = 30°, значит АК - биссектриса угла А.
Биссектриса делит противоположную сторону в отношении прилежащих сторон (свойство). Тогда СК/КВ = АС/АВ.
Но АВ = 2·АС (так как катет АС лежит против угла В, равного 30°). =>
СК/КВ = АС/(2АС) = 1/2. =>
СК = КВ/2 = 12/2 = 6 см.
Или так:
∠АКС = 60° (дано) => ∠САК = 30° (по сумме острых углов прямоугольного треугольника САК). => ∠ВАК = 30°. =>
Треугольник АКВ равнобедренный, так как ∠В = 30° (по сумме острых углов прямоугольного треугольника АВС). и ∠ВАК = 30° (доказано выше). =>
АК = ВК = 12 см.
В прямоугольном треугольнике АКС угол КАС = 30°, значит
СК = АК/2 = 12/2 = 6см.
Или так:
Пусть СК = х. => ВС = 12+х.
В прямоугольном треугольнике АВС угол В равен 30° по сумме острых углов.
Tg(∠B) = tg30 = AC/BC = √3/3. =>
AC = √3·(12+х)/3. (1)
В прямоугольном треугольнике АКС угол К равен 60° (дано).
Tg(∠К) = tg60 = AC/CК = √3. =>
AC = х√3. (2).
Приравняем (1) и (2): √3·(12+х)/3 = х√3. => 12+х = 3х. =>
СК = х = 6 см.
9π см²
Объяснение:
Sсеч=d*h, где d-диаметр, h- высота.
d=Sсеч/h=24/4=6см диаметр.
R=d:2=6:2=3 см радиус цилиндра.
Sосн=πR²=3²π=9π см² площадь сечения проведенного параллельно основанию