Розглянемо трикутник АМС. Сумка кутів трикутника дорівнює 180°, тоді ∠МАС+∠МСА+∠АМС=180°.
Сума суміжних кутів дорівнює 180°. Кути АMВ i AMC суміжні. Відомо, що ∠АМВ=117°, отже ∠АМС=180°-117°=63°
Бісектриса ділить кут навпіл отже ∠ВАС= ∠ВАМ+ ∠МАС=2∠МАС.
Трикутник АВС рівнобедрений тому кути при основі рівні тобто ∠ВАС=∠ВСА, отже оскільки ∠ВАС=2∠МАС, то і ∠ВСА=2∠МАС
Звідси ∠МАС+2∠МАС+63°.=180°.
3∠МАС=180°-63°
3∠МАС=117°
∠МАС=39°
∠ВАС=∠ВСА= ∠ВАМ+ ∠МАС=2∠МАС=2*39°=78°
∠АВС=180°-78°-78°=24°- за т. про суму кутів трикутника.
Відпповідь: ∠АВС=24°, ∠ВАС=∠ВСА=78°
Объяснение:
Пусть эта точка Р. Расстояния от этой точки до других сторон - это перпендикуляры из этой точки на стороны, то есть отрезки РМ и РN - параллельные высотам. Тогда в подобных треугольниках АВК (ВК- высота) и АРМ АВ/АР=ВК/РМ=5/3; Отсюда АР = 3АВ/5; Запомним это. На стороне АВ отрезок РВ = АВ-АР = АВ-3АВ/5 = 2АВ/5; Запомним и это.
В подобных треугольниках АВТ (АТ-высота на сторону ВС = 5, т.к. высоты равны) и РВN РN/АТ=РВ/АВ отсюда РN = РВ*АТ/АВ = РВ*(5/АВ) или РN = (2АВ/5)*(5/АВ) = 2.
Итак, расстояние от точки Р до третьей стороны треугольника равно 2.