Точки a и b делят окружность с центром o на дуги amb и acb так,что дуга acb на 60 градусов меньше дуги amb.am-диаметр окружности.найдите углы amb,abm,acb
Пусть АС=4х, ВD=6x, тогда отношение AC:BD=4x:6x=2:3
Диагонали ромба взаимно перпендикулярны, в точке пересечения делятся пополам и разбивают ромб на 4 равных прямоугольных треугольника. По теореме Пифагора сторона ромба а²=(d₁/2)²+(d₂/2)²=(2x)²+(3x)²=13x² а=х√13
Из формул для вычисления площади треугольника АОВ S(Δ AOB)=AO·OB/2 и S(Δ AOB)=AB·OE/2
находим OE AO·OB=AB·OE OE=2x·3x/х√13=6х/√13.
Из треугольника АОЕ по теореме Пифагора AE²=AO²-EO²=(2x)²-(6x/√13)²=4x²-(36x²/13)=(52x²-36x²)/13=16x²/13 AE=4x/√13
S(Δ AOE)=AE·OE/2
(4x/√13)·(6x/√13)=54 24x²=54·13 x²=9·13/4
S(ромба)=a·h=(x√13)·2OE=(x√13)·2·(6x/√13)=12x²=12·(9·13/4)=27·13= =351 кв. ед
Есть аксиома такая, если прямая параллельна одной из двух параллельных прямых, тогда она параллельна и второй.
Теперь, если прямые не пересекаются, то они параллельны. Но нам известно, что прямая пересекает одну из двух параллельных прямых, соответственно, она не может быть параллельной (не пересекаться) со второй. Это следствие вытекает из аксиомы. Если бы она не пересекала вторую, значит и к первой была бы параллельна.
Примечание. Все вышесказанное справедливо для прямых относящихся (принадлежащих) одной плоскости.
Найдем градусную меру дуг АМВ и АСВ.
Можно сделать это уравнением, можно вычесть из 360 разницу и найти угол АСВ, затем АМВ.
(360-60):2=150°
Дуга АСВ=150°
Дуга АМВ=150+60=210°
Центральный
угол АСВ=150°
Центральный
угол АОВ=210°
Вписанный
угол АМВ=1/2 АОВ=150:2=75°
Вписанный
угол АВМ=1/2 АОМ=180:2=90°
Вписанный
угол АСВ=1/2 АМВ=210:2=105°