Финляндия елінің мемлекеттік туын жасау үшін өлшемі 60 см х 40 см болатын ақ матаға көк түстен крест түріндегі жолақ салынады. Көк түсті матаның ауданы 1050 см2. т-тің мәнін тап. BILM Land х+5 см т см| | 40 см 60 см
Геометрический S(AMB)=1/2MA·MB·sin(AMB)=(√3/4)MA·MB, т.к. ∠AMB=∠ACB=60°. Отсюда MA·MB=4S(AMB)/√3 и аналогично из площадей треугольников AMC и СМВ получим MA·MC=4S(AMC)/√3, MC·MB=4S(СMВ)/√3. По теореме косинусов для тех же треугольников: AB²=MA²+MB²-MA·MB=MA²+MB²-(4/√3)·S(AMB); AС²=MA²+MС²+MA·MС=MA²+MС²-(4/√3)·S(AMС); СB²=MС²+MB²-MС·MB=MС²+MB²-(4/√3)·S(СMB). Сложим эти равенства: AB²+AС²+СB²=2(MA²+MB²+MС²)-(4/√3)·(S(AMB)-S(AMС)+S(СMB)). Но AB=AС=СB=√3, и значит AB²+AС²+СB²=3+3+3=9, S(AMB)+S(СMB)-S(AMС)=S(ABC)=(3√3)/4. Поэтому 9=2(MA²+MB²+MС²)-(4/√3)·(3√3)/4, т.е. MA²+MB²+MС²=(9+3)/2=6.
Тригонометрический Если R - радиус, О - центр окружности и ∠AOM=2x, то MА=2Rsin(x), MB=2Rsin(60°+x), MC=2Rsin(60°-x). Значит MA²+MB²+MС²=4R²(sin²(x)+sin²(60°+x)+sin²(60°-x)). После раскрытия синусов суммы и упрощения получим 6R², что и требовалось.
Из вершины Д проведём перепендикуляр на ВС, получили прямоугольный треугольник с острым углом С=30 градусов. Против этого угла лежит катет, равный половине СД, т.е. 7 корней из 3 делёное на 2. Теперь проведём перепендикуляр из вершины В к прямой АД, получили прямоугольный треугольник АВК с углом В, равным 30 градусов и катет ВК, прилежащий к этому углу равен 7 корней из 3 делёное на 2. Катет этого треугольника, лежащий против угла в 30 градусов (АК) обозначим за х, а гипотенузу АВ за 2х. Теперь по теореме Пифагора: АВ квадрат - АК квадрат = ВК квадрат. х=3,5 - это АК. Теперь АВ = 3,5*2=7. ответ: 7.
ответ: X=10см
Объяснение:100