М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
лаброри
лаброри
29.12.2020 05:18 •  Геометрия

В параллелограмме bca=75градусов acd=60 градусов ad=3√3 найдите ac

👇
Ответ:
sakds
sakds
29.12.2020
Хорошо, давайте разберем эту задачу.

У нас есть параллелограмм, и нам нужно найти длину стороны AC.

Для начала, посмотрим на угол BCA. Мы знаем, что BCA равно 75 градусов. В параллелограмме противоположные углы равны, поэтому угол CDA также равен 75 градусов.

Теперь обратим внимание на угол ACD. Мы знаем, что ACD равно 60 градусов.

Заметим, что углы BCA и ACD являются соседними углами, а сумма соседних углов в параллелограмме равна 180 градусов. Поэтому можем записать следующее уравнение:

BCA + ACD = 180 градусов
75 + 60 = 180 градусов

Теперь найдем угол BCD, зная, что сумма углов треугольника равна 180 градусов:

BCD = 180 - BCA - ACD
BCD = 180 - 75 - 60
BCD = 45 градусов

Теперь мы можем применить тригонометрическую формулу синуса в треугольнике BCD, чтобы найти длину стороны AC:

sin(BCD) = (BC / AC)

Мы знаем, что BCD равно 45 градусов, а AC - это сторона, которую мы хотим найти. Таким образом, мы получаем следующее уравнение:

sin(45) = (BC / AC)

Теперь найдем значение sin(45) с помощью таблицы значений или калькулятора:

sin(45) = 0.7071 (округленно)

Теперь мы можем решить уравнение:

0.7071 = (BC / AC)

Домножим обе стороны на AC:

0.7071 * AC = BC

Теперь нам нужно найти длину стороны BC. Ранее мы сказали, что BCA равно 75 градусов. Значит, угол ABC равен:

ABC = 180 - BCA
ABC = 180 - 75
ABC = 105 градусов

Теперь мы можем применить тригонометрическую формулу синуса в треугольнике ABC, чтобы найти длину стороны BC:

sin(ABC) = (BC / AB)

Мы знаем, что ABC равно 105 градусов, а AB = AD = 3√3. Таким образом, мы получаем следующее уравнение:

sin(105) = (BC / 3√3)

Теперь найдем значение sin(105) с помощью таблицы значений или калькулятора:

sin(105) = 0.9689 (округленно)

Теперь мы можем решить уравнение:

0.9689 = (BC / 3√3)

Домножим обе стороны на 3√3:

0.9689 * 3√3 = BC

Теперь у нас есть значение BC, которое мы можем подставить в первое уравнение:

0.7071 * AC = BC

0.7071 * AC = 0.9689 * 3√3

Теперь разделим обе стороны на 0.7071:

AC = (0.9689 * 3√3) / 0.7071

AC ≈ 4.216

Таким образом, длина стороны AC примерно равна 4.216.
4,4(77 оценок)
Проверить ответ в нейросети
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ