Номер 1
Треугольники АВD и DBC равны между собой по второму признаку равенства прямоугольных треугольников-по катету и прилежащему к нему острому углу
DB-общая сторона
<АDB=<BDC
Исходя из этого
AD=AC
Номер 2
Треугольники АВС и АСD равны между собой по третьему признаку равенства треугольников-по трём сторонам
ВС=AD;BA=CD;по условию задачи
АС-общая
Номер 4
Треугольники АВD иСВD равны между собой по второму признаку равенства треугольника-по стороне и двум прилегающим к ней углам
<АВD=<DBC;<ADB=<BDC
DB-общая сторона
В равных треугольниках соответствующие стороны и углы равны между собой,поэтому
<А=<С
Номер 3
Треугольники равны по второму признаку равенства треугольников-по стороне и двум прилежащим к ней углам
<А=<D;AO=OD;
<АОС=<АОВ,как вертикальные
Из равенства треугольников вытекает,что АС=DB
Номер 1
Треугольники АDB и ВDC прямоугольные и равны между собой по 5 признаку равенства прямоугольных треугольников-по катету и гипотенузе
AD=CD;AB=BC по условию задачи
Треугольник АDC-равнобедренный,т к по условию АD=DC,cледовательно-углы при основании равнобедренного треугольника равны между собой
<А=<С
Номер 2
Треугольники равны между собой по второму признаку равенства треугольников-по стороне и двум прилегающим к ней углам
ВО=ОD;<B=<D; <AOB=<COD,как вертикальные
Исходя из равенства треугольников,
АО=ОС
Номер 4
Треугольники равны по первому признаку равенства треугольников
<СВD=<ADB;<ABD=<BDC;
BD-общая сторона
Треугольники равны,а значит равны АС=АD
Номер 3
Треугольники равны по первому признаку равенства треугольников-по двум сторонам и углу между ними
АВ=АD;<BAC=<DAC;по условию задачи
АС-общая сторона
Т к доказано равенства треугольников,то и
<АСD=<ACB
Объяснение:
когда угол наклона боковых граней пирамиды одинаковый, 1. апофемы пирамиды все равны между собой 2. их проекции - это радиусы вписанной окружности (кстати, в основание должна вписываться окружность, обязательно, для треугольника это всегда, а вот для других многоугольников - может быть и не так :))
Высота пирамиды, радиус вписаной в основание окружности и апофема образуют прямоугольный треугольник с углом напротив высоты пирамиды в 60 градусов.
Осталось найти радиус вписанной в прямоугольный треугольник с углом 30 градусов и противолежащим катетом 6. Стороны этого треугольника - гипотенуза 12, второй катет 6*корень(3),
r = (6 + 6*корень(3) - 12)/2 = 3*(корень(3) - 1);
H = r*корень(3) = 3*(3 - корень(3));