Обозначим параллелограмм ABCD ,биссектриса проведена из угла В к стороне AD в точке M .Угол А =180°-150°=30°(сумма соседних углов параллелограмма 180°) .∠ABM равен углу BMC =150°÷2=75°(так как BM - биссектриса) .∠BMA треугольника ABM равен 180°-75°-30°=75°,значит треугольник ABM -равнобедренный с основанием BM ,поэтому AB=AM=16 см .AD=AM+MD=16+5= 21 см .Площадь параллелограмма ABCD найдём по формуле S=a×b×sinα(где а и b стороны параллелограмма ,а α-угол между ними).S=16×21×sin30°=336×0,5=168 см² .
Пусть дан треугольник ABC, углы А, B, C, стороны a, b, c;
Теорема синусов: a/sinA = b/sinB = c/sinC
Теорема косинусов: a^2 = b^2 + c^2 - 2*b*c*cosA; (ну и также для остальных углов) (короче, похожа на теорему Пифагора, только обобщённую на произвольный треугольник).
Ну вот. Пусть те стороны равны 3х и 8х. Тогда пиши теорему косинусов: 441= 9*х^2+64*x^2-48*x^2*0,5=49*x^2; x^2 = 9 =>x=3. Тогда две другие стороны равны 9 и 24 соответственно. Далее по теореме синусов можно было бы найти углы - но этого не требуется.
Объяснение:
Міне жауабы бәрі дұрыс