Построить профильную проекцию модели, нанести необходимые размеры. На проекциях показать все невидимые ребра. (Фото 1)
Найти расстояние между параллельными фронтальными прямыми AB и CD. Дать обоснование метода решения, привести краткое описание хода построений. (Фото 2)
Определить натуральную величину треугольника АВС вращения. Дать определение метода решения, привести краткое описание хода построений. (Фото 3)
Из треугольника КВМ имеем то, что он прямоугольный с углом ВМК = 30. Отсюда КВ = половине гипотенузы, те = 2. По теореме Фалеса КМ делит сторону АВ пополам, т.е. АВ = 4. Из прямоугольного треугольника АВД АВ гипотенуза равна удвоенному АВ, как катету против угла в 30 градусов. АД=8. По теореме Пифагора ВД = √64 - 16 = √48 = 4√3 см. Площадь параллелограмма равна 4*4√3 = 16√3 см². Площадь треугольника АВД равна половине площади параллелограмма, а площадь треугольника АМД равна половине площади треугольника АВД., т.к. у них одно основание АД, а высоты относятся как 1:2. Значит, площадь треугольника АМД = 16√3/4 = 4√3 см²
найдём гипатенузу АС треугольника АВС: по теореме Пифагора считаем АС²=АВ²+ВС² АС²=8²+8²=64+64=128 АС=√128=8√2 (см). проведём медиану ВК, которая будет являться радиусом окружности, который нам позже понадобится. В равнобедренном треугольнике медиана будет делить сторону АС на две равных части, тогда АК=8√2/2=4√2 (см). медиана ВК есть ещё и биссектриса, следовательно перед нами ещё один равнобедренный треугольник АВК, так что АК=ВК=4√2 (см). Теперь используем формулу для нахождения дуги окружности: L=2πr(ø/360°), где π-число пи; ø-центральный угол. для нашего случая используем эти стороны и углы: L=2π*BК(уголАВС/360°) подставим значения: L=2π*4√2(90°/360°)=2π√2≈8.885 (см). ответ: длина дуги, ограниченная треугольником АВС=2π√2 или ≈8.885 см.
Площадь параллелограмма равна 4*4√3 = 16√3 см².
Площадь треугольника АВД равна половине площади параллелограмма, а площадь треугольника АМД равна половине площади треугольника АВД., т.к. у них одно основание АД, а высоты относятся как 1:2. Значит, площадь треугольника АМД = 16√3/4 = 4√3 см²