а) 45°, 135°; б) 252°.
Объяснение:
а) Обозначим меньший из смежных углов за х. Он будет меньше большего угла в 3 раза, следовательно, больший угол будет равен 3х. Сумма смежных углов равна 180°, значит, можем составить уравнение: х+3х=180°, откуда х=45°, т. е. меньший угол равен 45°, а градусная мера большего угла - 45°*3=135°.
б) (рисунок на прикреплённом фото) Биссектриса делит угол пополам, значит, зная один из углов, образовавшихся при проведении биссектрсы, сможем найти исходный угол.
Обозначим один из образовавшихся углов за х, тогда и другой образовавшийся угол будет равен х, т. к. биссектриса делит угол пополам. Исходный угол в таком случае будет равен х+х=2х. Угол х дан по условию: х=126°. Найдём исходный угол: 2х=126°*2=252°.
Четырёхугольник MNPK - параллелограмм.
MP - диагональ.
∡NMP = 25°.
∡PMK = 20°.
Найти :∡M = ?
∡N = ?
∡P = ?
∡K = ?
Решение :∡M = ∡NMP + ∡PMK = 25° + 20° = 45°.
Сумма соседних углов параллелограмма равна 180°.То есть -
∡М + ∡N = 180°
∡N = 180° - ∡М
∡N = 180° - 45°
∡N = 135°.
Противоположные углы параллелограмма равны.Следовательно -
∡M = ∡P = 45°
∡N = ∡K = 135°.
ответ :45°, 135°, 45°, 135°.
- - -
б)Дано :Четырёхугольник ABCD - ромб.
BD - диагональ.
∡ABD = 65°.
Найти :∡A = ?
∡В = ?
∡С = ?
∡D = ?
Решение :Рассмотрим ΔABD. Так как ABCD - ромб, то AD = AB = BC = DC (по определению ромба), тогда ΔABD - равнобедренный.
Углы у основания равнобедренного треугольника равны.Следовательно -
∡ABD = ∡BDA = 65°
Тогда по теореме о сумме углов треугольника -
∡BAD = 180° - (∡ABD + ∡BDA) = 180° - (65° + 65°) = 50°.
Сумма соседних углов параллелограмма равна 180°.Следовательно -
∡BAD + ∡АВС = 180°
∡АВС = 180° - ∡BAD
∡ABС = 180° - 50° = 130°.
Противоположные углы параллелограмма равны.То есть -
∡А = ∡С = 50°
∡В = ∡D = 130°.
ответ :50°, 130°, 50°, 130°.
- - -
в)Дано :Четырёхугольник EFTS - трапеция (FT║ES, EF и TS - боковые стороны).
∡FES = 45°.
∡TSE = 80°.
Найти :∡F = ?
∡Т = ?
Решение :В трапеции сумма углов, прилежащих к боковой стороне, равна 180°.Следовательно -
∡FES + ∡F = 180°
∡F = 180° - ∡FES = 180° - 45° = 135°.
- - -
∡TSE + ∡T = 180°
∡T = 180° - ∡TSE = 180° - 80° = 100°.
ответ :135°, 100°.