ABCD - параллелограмм
\begin{gathered}\overrightarrow{AD} = \overrightarrow a \\ \\ \overrightarrow{AB} = \overrightarrow b \\ \\ K \in BC, ~L \in ADBK:KC=3:4, ~AL:LD=4:3\end{gathered}
AD
=
a
AB
=
b
K∈BC, L∈AD
BK:KC=3:4, AL:LD=4:3
Выразить вектор \overrightarrow {KL}
KL
через вектора \overrightarrow a, ~\overrightarrow b
a
,
b
\displaystyle \overrightarrow{KL} =\overrightarrow{KB} +\overrightarrow{BA}+ \overrightarrow {AL}
KL
=
KB
+
BA
+
AL
(по правилу суммы нескольких векторов)
Рассмотрим параллелограмм ABCD
AD = BC по свойству параллелограмма
AD ║ BC - по определению параллелограмма
\Rightarrow \overrightarrow{BC} = \overrightarrow{AD} = \overrightarrow a⇒
BC
=
AD
=
a
\begin{gathered}\displaystyle \overrightarrow {KB} = \frac{3}{7}\overrightarrow{CB} = -\frac{3}{7}\overrightarrow{BC} = -\frac{3}{7}\overrightarrow a \\ \\ \overrightarrow {BA} = -\overrightarrow {AB} = -\overrightarrow b \\ \\ \overrightarrow {AL} = \frac{4}{7}\overrightarrow{AD} = \frac{4}{7}\overrightarrow{a}\end{gathered}
KB
=
7
3
CB
=−
7
3
BC
=−
7
3
a
BA
=−
AB
=−
b
AL
=
7
4
AD
=
7
4
a
\displaystyle \overrightarrow{KL} =\overrightarrow{KB} +\overrightarrow{BA}+ \overrightarrow {AL} = -\frac 3 7 \overrightarrow a - \overrightarrow b + \frac 4 7 \overrightarrow a = \frac 1 7 \overrightarrow a - \overrightarrow b
KL
=
KB
+
BA
+
AL
=−
7
3
a
−
b
+
7
4
a
=
7
1
a
−
b
\displaystyle \text{Answer}: \boxed{\overrightarrow {KL} = \frac 1 7 \overrightarrow a - \overrightarrow b}Answer:
KL
=
7
1
a
−
b
1) Формула объёма конуса V=S•H:3=πr²H:3
Формула объёма шара
V=4πR³:3
Осевое сечение данного конуса - равносторонний треугольник, т.к. его образующая составляет с плоскостью основания угол 60°.
Выразим радиус r конуса через радиус R шара.
r=2R:tg60°=2R/√3
V(кон)=π(2R/√3)²•2R²3=π8R³/9
V(шара)=4πR³/3
V(кон):V(шар)=[π8R³/9]:[4πR³/3]=(π•8R³•3/9)•4πR³=2/3
———————
2) Формула объёма цилиндра
V=πr²•H
Формула площади осевого сечения цилиндра
S=2r•H
Разделим одну формулу на другую:
(πr²•H):(2r•H)=πr/2⇒
96π:48=πr/2⇒
4π=πr
r=4
Из площади осевого сечения цилиндра:
Н=S:2r=48:8=6
На схематическом рисунке сферы с вписанным цилиндром
АВ- высота цилиндра, ВС - его диаметр,
АС - диаметр сферы.
АС=√(6²+8²)=√100=10
R=10:2=5
S(сф)=4πR8=4π•25=100π см²
решение на фотографии