Точка О -центр окружности. Концы радиусов обозначим А и В. Соединим концы радиусов, получим хорду АВ. Рассмотрим полученный треугольник АОВ. Он равнобедренный, т.к АО=ВО = 8 см.. Из вершины О проведём высоту ОН к хорде. Получили 2 тр-ка. Рассмотрим тр-ник ВОН. Угол НОВ = 120:2 = 60 гр., т.к. высота равнобедренного тр-ника делит этот угол пополам. Угол ВОН = 90гр. Угол В = 180 -60 -90 =30 гр. Высота ОН лежит против угла 30 гр и равна половине гипотенузы ОН. ВО= 8/2 = 4 см. ответ: 4 см - расстояние от центра окружности до хорды.
Пусть расстояние от точки М до прямой АС - перпендикуляр МК=10, а расстояние от точки М до прямой АВ - перпендикуляр МН. По свойству угла между касательной и хордой <BAM равен половине дуги, заключенной между касательной АВ и хордой АМ. <BAC равен половине дуги, заключенной между касательной АВ и хордой АС. Дуги АМ и МС равны (дано) Значит АМ - биссектриса <BAC и прямоугольные треугольники НАМ и КАМ равны по острому углу и общей гипотенузе АМ. Из этого равенства катеты МН и МК равны. ответ: искомое расстояние МН=10.
Объяснение:
вот три теоремы:
1) если при пересечении двух прямых секущей внутренние накрест лежащие углы равны, то прямые параллельны
2) если при пересечении двух прямых внутренние односторонние углы равны, то прямые параллельны
3) если при пепесечении двух прямых секущей соответственные углы равны, то прямые параллельны
с доказывать лекго. там все углы или вертикальные, или смежные