Треугольник с периметром 12 см разделён своей высотой на треугольники с периметрами 7 см и 9 см Найдите длину высоты треугольника. А)2см; Б)3см; В)1см; Г)4см.
Пусть периметр треугольника ABC равен 12, высота AD делит его на треугольники ABD и ACD, периметры которых равны 7 и 9 соответственно. Значит, AB+BC+AC=12, AB+BD+AD=7, AC+CD+AD=9. Сложим последние 2 равенства: AB+AC+BD+CD+2AD=16, AB+BC+AC+2AD=16. Вычтем из этого равенства первое, тогда 2AD=4, AD=2 - ответ: высота равна 2
Найдем стороны четырехугольника АВСD: Длина вектора, заданного координатами, равна корню квадратному из суммы квадратов его координат.Чтобы найти координаты вектора, заданного координатами начала и конца, надо от координат КОНЦА отнять соответствующие координаты НАЧАЛА. АВ{-1;-1;2}, |AB|=√(1+1+4)=√6. BC{1;-1;0}, |BC|=√(1+1+0)=√2. CD{1;1;-2},|CD|=√(1+1+2)=√6. AD{1;-1;0}, |AD|=√(1+1+0)=√2. Итак, в четырехугольнике противоположные стороны ПОПАРНО равны: AB=CD, BC=DA. Если противоположные стороны ПОПАРНО равны, то четырехугольник АВСD - параллелограмм.(свойство). Что и требовалось доказать. Теперь определим угол между двумя соседними векторами АВ{-1;-1;2} и AD{1;-1;0}. Угол α между вектором a и b: cosα=(x1*x2+y1*y2+z1*z2)/[√(x1²+y1²+z1²)*√(x2²+y2²+x2²)]. В нашем случае: cosα=(1+1+0)/[√(1+1+4)*√(1+1+0)] = 2/(2√3) = 1/√3 или CosA=√3/3.
Построим равнобедренный треугольник АВС с основанием АВ. Проведем высоты АД и ВЕ. Рассмотрим треугольники ACД и BCЕ. AC=BC (как боковые стороны равнобедренного треугольника), угол АСВ - общий, углы AДC=BЕC=90 (так как AД и BЕ высоты). Сумма углов треугольника равна 180 градусам. В треугольнике ACД угол CAД=180-(AДC+АСВ)=180 - 90 - АCВ=90-АСВ градусов. В треугольнике BCЕ угол CBЕ=180- (BЕC+АСВ)=180- 90 -АСВ=90-АCВ градусов. Значит: углы CAД=CBЕ. Следовательно, треугольники ACД и BCЕ равны (по стороне и двум прилежащим к ней углам). Так как треугольники ACД и BCЕ равны то и соответствующие стороны равны: AД=BЕ.
Пусть периметр треугольника ABC равен 12, высота AD делит его на треугольники ABD и ACD, периметры которых равны 7 и 9 соответственно. Значит, AB+BC+AC=12, AB+BD+AD=7, AC+CD+AD=9. Сложим последние 2 равенства: AB+AC+BD+CD+2AD=16, AB+BC+AC+2AD=16. Вычтем из этого равенства первое, тогда 2AD=4, AD=2 - ответ: высота равна 2