Площадь прав тр через радиус вписанной окружности равен 3 корня из 3 на радиус в квадрате, а площадь вписанного круга равна Пи на радиус в квадрате.
Рассмотрим во сколько раз площадь треугольника больше площади круга.
Пусть площадь круга х, тогда площадь треугольника (по условию) с одной стороны и
с другой.
Получим уравнение
Разрешим относительно х. Приведем к знаменателю Пи и приравняем числители
Вынесем 3 корня из трех - Пи за скобки и получим
площадь круга = 9Пи
Найдем радиус круга
Т к радиус не может быть отрицательным то он равен 3
Площадь прав тр через радиус вписанной окружности равен 3 корня из 3 на радиус в квадрате, а площадь вписанного круга равна Пи на радиус в квадрате.
Рассмотрим во сколько раз площадь треугольника больше площади круга.
Пусть площадь круга х, тогда площадь треугольника (по условию) с одной стороны и
с другой.
Получим уравнение
Разрешим относительно х. Приведем к знаменателю Пи и приравняем числители
Вынесем 3 корня из трех - Пи за скобки и получим
площадь круга = 9Пи
Найдем радиус круга
Т к радиус не может быть отрицательным то он равен 3
1) Находим катет AB треугольника ABC по теореме Пифагора (a^2 + b^2 = c^2):
c^2 - a^2 = b^2
13^2 - 5^2= 169 - 25=144
a^2=144 a=12 | катет AB=12см
Так как AS является перпендикуляром к AB, то угол BAS=90градусов, следовательно, треугольник BAS является прямоугольным, причем катеты AB и AS равны. А у равнобедренного прямоугольного треугольника углы равны 45градусов.
ответ:45градусов.