66 см²
Объяснение:
Медианы треугольника пересекаются в одной точке, и точкой пересечения делятся в отношении 2:1, считая от вершины.
⇒ ВМ:МК=2:1.
У ΔАМК и ΔАВМ одна и та же высота АН - перпендикуляр, проведенный из вершины А к прямой ВК, содержащей стороны ВМ и МК этих треугольников.
Если два треугольника имеют одинаковые высоты, то отношение их площадей равно отношению длин оснований (сторон, на которые опущены эти высоты) ⇒
Samk/Sabm=1/2 ⇒
11/Sabm=1/2 =>
22=Sabm.
Sabk=22см²+11см²=33см²
медиана ВК делит ΔАВС на два равновеликих т.е Sabk = Skbc.
⇒
Sabc=33*2=66см²
Обозначим стороны основания а = АD= 15 и неизвестная сторона в = DС.
Дианональ боковой стороны d1 = DC1 = 16, диагональ основания d2 неизвестна, диагональ параллелепипеда B1D = D = 19, высота параллелепипеда Н неизвестна.
Используем теорему Пифагора:
b² = d1² - Н²
или
b² = 256 - Н² (1)
d2² = D² - H²
или
d2² = 361 - H² (2)
вычтем (1) из (2)
d2² - b² = 361 - 256
d2² - b² = 105
или
d2² = 105 + b² (3)
Используем теперь теорему косинусов для треугольника, образованного сторонами основания а и b и диагональю d2:
d2² = а² + b² - 2ab·cos60°
d2² = 15² + b² - 2·15·b·0.5
d2² = 225 + b² - 15b (4)
Приравняем правые части выражений (3) и (4)
105 + b²= 225 + b² - 15b
105 = 225 - 15b
15b = 120
b = 8
Высоту параллелепипеда Н найдём из (1)
Н² = 256 - b² = 256 - 64 = 192
Н = √192 = 8√3
Площадь боковой поверхности
Sбок = 2Н·(а+b) = 2·8√3·(15+8) = 368√3
тебе это нужно
1)Окружность всегда можно вписать/описать в/около треугольника
2) центр вписанной окружности - точка пересечения биссектрис, описанная - точка пересечения серединных перпендикуляров.
Объяснение: