Найдите углы равнобедренного треугольника, если один из его углов в пять раз меньше суммы двух других.
============================================================
Пусть ∠А = ∠С = х , ∠В = у, тогдаРассмотрим 2 случая решения данной задачи:Первый случай:∠В = ( ∠А + ∠С )/5у = 2х/5Сумма всех углов в треугольнике составляет 180° ⇒∠А + ∠В + ∠С = 180°х + 2х/5 + х = 18х°12х/5 = 180°х = 75°Значит, ∠А = ∠С = 75° , ∠В = 30°Второй случай:∠А = ( ∠В + ∠С )/5х = ( у + х )/55х = у + ху = 4хСумма всех углов в треугольнике составляет 180° ⇒∠А + ∠В + ∠С = 180х + 4х + х = 180°6х = 180°х = 30°Значит, ∠А = ∠С = 30° , ∠В = 120°ОТВЕТ: 30°, 75°, 75° ИЛИ 30°, 30°, 120°
х - y = 16, y = х -16. d =2*x (так как х - средняя линия треугольника с большим основанием. b =2*y (так как y - средняя линия треугольника с меньшим основанием трапеции. Тогда b = 2(х-16). В равнобочной трапеции высота, опущенная на большее основание, делит его на отрезки, равные полуразности и полусумме оснований. Полуразность оснований лежит против угла 30° в прямоугольном треугольнике, где гипотенуза - боковая сторона трапеции. Тогда (d-b)/2 = 2(x-x+16)/2 = 16. Итак, боковая сторона равна 16*2=32см.(как гипотенуза). Сумма двух оснований равна 144-2*32 = 80см.
Имеем: d+b = 80cм, а d-b = 32см, отсюда 2d=112, d = 56cм. Ну и b = 80-56=24cм.
ответ: основания трапеции равны 24см и 56см.
Рисунок добавлю.