М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Sekretik111
Sekretik111
29.09.2022 14:42 •  Геометрия

Дан треугольник ABC. AC= 8,4 см;

∢ B= 45°;
∢ C= 60°.

(ответ упрости до целого числа под знаком корня.)

ответ: AB= −−−−−√ см.

👇
Ответ:
drmarinda
drmarinda
29.09.2022

ответ: 4,2√6 см

Объяснение: на фото рисунок и решение по теореме синусов, которая используется, если известна одна пара угла и стороны напротив него + какой-то угол либо сторона


Дан треугольник ABC. AC= 8,4 см; ∢ B= 45°; ∢ C= 60°. (ответ упрости до целого числа под знаком корня
4,7(100 оценок)
Открыть все ответы
Ответ:
Перпендикуляр к прямой Определение. Отрезок АН называется перпендикуляром, проведенным из точки А к прямой а, если прямые АН и а перпендикулярны. Точка Н называется основанием перпендикуляра. Теорема Из точки, не лежащей на прямой, можно провести перпендикуляр к этой прямой, и притом только один. Существование. Из точки, не лежащей на прямой, можно провести перпендикуляр к этой прямой Дано: Прямая BC Т.A∉BC Доказать: Из точки А можно провести перпендикуляр к прямой ВС. Доказательство: Отложим от луча ВС ∠ МВС = ∠ ABC. Т.к.∠ ABC =∠ МВС, то первый из них можно наложить на второй так, что стороны ВА и ВС совместятся со сторонами ВМ и ВС.  При этом точка А наложится на некоторую точку А1 луча ВМ. Точка Н =АА1∩ ВС. При указанном наложении луч НА совмещается с лучом НА1, поэтому ∠ 1 совмещается с ∠ 2. Следовательно, ∠ l=∠ 2.  Но углы 1 и 2 — смежные, значит, каждый из них прямой. АН⊥ВС ( по определению).
4,7(31 оценок)
Ответ:
настя20162003
настя20162003
29.09.2022
Из любой точки, не лежащей на данной прямой, можно опустить на эту прямую перпендикуляр, и притом только один.

Доказательство: предположим, что на плоскости, которой принадлежат и прямая, и точка, таких перпендикуляров существует два. Поскольку точка вне прямой принадлежит обоим перпендикулярам, получаем треугольник с вершиной в этой точке и основанием, расположенном на прямой. Так как оба перпендикуляра составляют с прямой углы по 90° (углы при основании треугольника) плюс угол при вершине, то сумма внутренних углов такого треугольника получается больше 180°, - а это на плоскости осуществить невозможно. Следовательно, наше предположение о том, что через одну точку к данной прямой на плоскости можно провести больше одного перпендикуляра, - не верно и такой перпендикуляр существует только один. Теорема доказана.
4,8(73 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ