М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Leerikaa
Leerikaa
20.09.2020 15:49 •  Геометрия

7 класс . Решить надо полностью с доказательством .

👇
Ответ:
Alexandraananeva
Alexandraananeva
20.09.2020

Рассмотрим ∆АОС - равнобедренный (АО = ОС по условию). Тогда углы DAC и ECA равны (по свойству равнобедренного треугольника).

Рассмотрим ∆АЕС и ∆DAC - прямоугольные. АС - общая сторона (гипотенуза), углы DAC = ECA по выше доказанному, поэтому, ∆АЕС = ∆DAC по гипотенузе и острому углу.

У равных треугольников равны соответствующие элементы (углы, стороны). Поэтому, углы ВАС и ВСА равны.

Рассмотрим ∆АВС. Углы ВАС и ВСА равны, следовательно, ∆АВС - равнобедренный, соответственно, АВ = ВС.

ответ: что требовалось доказать.

4,5(44 оценок)
Открыть все ответы
Ответ:
krisdenya2005
krisdenya2005
20.09.2020

1. Соединим точки С и D с центром. Тогда треугольники AOD и ВОС равнобедренные (OA = OB = OC = OD как радиусы), ⇒

∠1 = ∠2 и ∠3 = ∠4.

∠2 = ∠3 как накрест лежащие при пересечении параллельных прямых AD и ВС секущей АВ. Но тогда в этих треугольниках равны и углы при вершине О. Значит треугольники AOD и ВОС равны по двум сторонам и углу между ними, ⇒

AD = BC.

2. Точки, находящиеся на данном расстоянии от данной прямой а, будут расположены на прямой, параллельной прямой а (красные прямые). В зависимости от расположения прямых задача может иметь одно решение (1), два решения (2) и не иметь решения (3).

4,6(57 оценок)
Ответ:
lizazimovets1
lizazimovets1
20.09.2020
Для нахождения координат двух других вершин квадрата, мы можем использовать свойство параллельных прямых, которое гласит, что если два отрезка образуют прямоугольный треугольник, то их продолжения также будут образовывать прямоугольный треугольник. В данном случае, мы знаем координаты точки A(0;4) и C(6;0), и можем нарисовать прямые AC и BD, которые будут диагоналями квадрата.

Шаг 1: Найдем уравнение прямой AC.
Для этого воспользуемся формулой уравнения прямой, которая выглядит следующим образом: y = mx + c, где m - это угловой коэффициент прямой, а c - угловой коэффициент.

Угловой коэффициент прямой можно найти, используя формулу: m = (y2 - y1) / (x2 - x1), где (x1, y1) и (x2, y2) - координаты двух точек, через которые проходит прямая.

Применяя эту формулу к точкам A(0;4) и C(6;0), получим:
m = (0 - 4) / (6 - 0) = -4 / 6 = -2/3.

Теперь, чтобы найти угловой коэффициент c, подставим координаты одной из вершин в уравнение прямой:
4 = (-2/3) * 0 + c
4 = c

Таким образом, уравнение прямой AC имеет вид: y = (-2/3)x + 4.

Шаг 2: Найдем координаты точки B.
Поскольку BC - это диагональ квадрата, она будет перпендикулярна к AC и иметь противоположный угловой коэффициент. Таким образом, угловой коэффициент прямой BC будет 3/2.

Теперь, чтобы найти координаты точки B, зная уравнение прямой BC и координаты точки C(6;0), подставим эти значения в уравнение прямой:
0 = (3/2) * 6 + c
0 = 9 + c
c = -9

Таким образом, уравнение прямой BC имеет вид: y = (3/2)x - 9.

Шаг 3: Найдем координаты точки D.
Поскольку D - это противоположная вершина квадрата B, мы можем найти координаты точки D, находящейся на продолжении прямой BC, зная координаты точки C(6;0) и угловой коэффициент прямой BC.

Для этого, выберем любое значение x (например, 8) и найдем значение y, используя уравнение прямой BC:
y = (3/2) * 8 - 9 = 12 - 9 = 3

Таким образом, координаты точки D равны (8;3).

Шаг 4: Найдем координаты точки D'.
Точка D' - это противоположная вершина квадрата D. Так как угловой коэффициент прямой BD равен 2/3, мы можем найти координаты точки D' с помощью аналогичных шагов, что и для нахождения координат точки B.

Таким образом, уравнение прямой BD имеет вид: y = (2/3)x + 4.

Найдем координаты точки D', подставляя значения в уравнение прямой BD:
0 = (2/3) * x + 4
-4 = (2/3) * x
-6 = 2x
x = -3

Теперь найдем значение y, используя уравнение прямой BD:
y = (2/3) * (-3) + 4 = -2 + 4 = 2

Таким образом, координаты точки D' равны (-3;2).

Итак, мы нашли координаты двух других вершин квадрата ABCD: B(8;3) и D'(-3;2).
4,6(54 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ