ответ: два решения (одно для остроугольного треугольника, другое для тупоугольного...)
1) Р = 256 (см)
2) Р = 56V21 (см)
Объяснение: треугольник АВС, основание ВС=2а (чтобы не возиться с дробями); АВ=АС=b
P = 2a+2b = 2(a+b)
а=b*cos(B); по т.синусов: b=2R*sin(B)
S = 2a*h/2 = ah; h = b*sin(B)
S = P*r/2 = (a+b)*r
(a+b)*r = ab*sin(B)
b(1+cos(B))*r = b*b*sin(B)*cos(B)
(1+cos(B))*r = 2R*sin^2(B)*cos(B)
r/(2R) = (1-cos(B))*cos(B)
обозначим х=cos(B)
x^2 - x + (6/25) = 0
(5x)^2 - 5*(5x) + 6 = 0
по т.Виета корни (3) и (2)
5х=3 ---> х = 0.6
---> sin(B) = V(1-0.36) = 0.8 или
5х=2 ---> х = 0.4
---> sin(B) = V(1-0.16) = 0.2V21
b = 2*50*0.8 = 80 или
b = 2*50*0.2V21 = 20V21
a = 80*0.6 = 48 или
а = 20V21*0.4 = 8V21
P = 2*(80+48) = 128*2 = 256 или
Р = 2*(20+8)*V21 = 56V21
1)Воспользуемся для решения теоремой синусов для треугольника.
ВС / Sin A = AB / Sin C = AC / Sin B.
AB = 4 * √2, угол А = 450, угол С = 300, ВС = ?
(4 * √2) / Sin 30 = BC / Sin 45.
(4 * √2) / (1 / 2) = BC / 1 / √2).
ВС / 2 = (4 * √2) / √2 = 4.
ВС = 4 * 2 = 8 см.
ответ: ВС = 8 см.
2)
Рассмотрим треугольник АОС. Так как медианы равнобедренного треугольника равны и в точке пересечения делятся в отношении 2/1, то АО = СО, следовательно треугольник АОС равнобедренный, а его углы при основании будут равны: угол А = С = (180 – 120) / 2 = 300.
Тогда по теореме синусов: АС / Sin 120 = AO / Sin 30.
12 / (√3/2) = АО / (1/2).
АО = 6 / (√3/2) = 12 / √3 = 4 * √3.
Медианы треугольника, в точке пересечении делятся в соотношении 2/1, тогда АО / ОМ = 2 / 1.
ОМ = АО / 2 = 2 * √3.
Тогда М = СК = 2 * √3 + 4 * √3 = 6 * √3.
ответ: Медианы равны 6 * √3 см