Боковые ребра пирамиды равны => проекции боковых ребер на основание равны ЭТО утверждение верно , если в основании лежит РАВНОСТОРОННИЙ треугольник и вершина проецируется в его ЦЕНТР. Но по условию Основанием пирамиды служит равнобедренный треугольник В пирамиде ребра b=13 см В равнобедренном треугольнике - высота h= 9 см - основание/сторона a=6 м Боковая грань, которая опирается на сторону ( а) –это равнобедренный треугольник. Апофема этой боковой грани по теореме Пифагора A^2=b^2-(a/2)^2 =13^2-(6/2)^2=160 ; A=4 √10 см Апофема(А)+противоположное ребро(b)+высота основания(h) – образуют треугольник(Abh) с вершиной , совпадающей с вершиной пирамиды. В треугольнике(Abh) : Перпендикуляр из вершины пирамиды на высоту основания(h) – это высота пирамиды (Н). Угол По теореме косинусов A^2 = h^2+b^2 -2*h*b*cosCosТогда sinПлощадь треугольника(Abh) можно посчитать ДВУМЯ S ∆ = 1/2* H*h S ∆ = 1/2* b*h*sinПриравняем правые части 1/2* H*h = 1/2* b*h*sinH = b*sinответ 12 см
В прямоугольном треугольнике АКС угол К равен 60° (дано). =>
∠САК = 30°, значит АК - биссектриса угла А.
Биссектриса делит противоположную сторону в отношении прилежащих сторон (свойство). Тогда СК/КВ = АС/АВ.
Но АВ = 2·АС (так как катет АС лежит против угла В, равного 30°). =>
СК/КВ = АС/(2АС) = 1/2. =>
СК = КВ/2 = 12/2 = 6 см.
Или так:
∠АКС = 60° (дано) => ∠САК = 30° (по сумме острых углов прямоугольного треугольника САК). => ∠ВАК = 30°. =>
Треугольник АКВ равнобедренный, так как ∠В = 30° (по сумме острых углов прямоугольного треугольника АВС). и ∠ВАК = 30° (доказано выше). =>
АК = ВК = 12 см.
В прямоугольном треугольнике АКС угол КАС = 30°, значит
СК = АК/2 = 12/2 = 6см.
Или так:
Пусть СК = х. => ВС = 12+х.
В прямоугольном треугольнике АВС угол В равен 30° по сумме острых углов.
Tg(∠B) = tg30 = AC/BC = √3/3. =>
AC = √3·(12+х)/3. (1)
В прямоугольном треугольнике АКС угол К равен 60° (дано).
Tg(∠К) = tg60 = AC/CК = √3. =>
AC = х√3. (2).
Приравняем (1) и (2): √3·(12+х)/3 = х√3. => 12+х = 3х. =>
СК = х = 6 см.