Решается с применением теоремы: биссектриса, опущенная на сторону треугольника, делит её на отрезки в сотношением, равным отношению двух других сторон треугольника.
Таблица точек для графика приложена Из графика видно, что функция возрастает от (-∞;-2] и от [3;+∞) Это пока примерное решение, найдём точное производная функции f(x) = 2x³ - 3x² - 36x + 11 f'(x) = 3*2x² - 2*3x - 36 = 6x² - 6x - 36 = 6(x² - x - 6) Найдём нули производной для определения точек экстремумов функции f'(x) = 0 6(x² - x - 6) = 0 x² - x - 6 = 0 Дискриминант D = (-1)² - 4*1*(-6) = 1 + 24 = 25 = 5² Корни x₁ = (1 - 5)/2 = -2 x₂ = (1 + 5)/2 = 3 Т.е. точки, определённые по графику - точны, и ответ функция возрастает при x ∈ (-∞;-2] и x ∈ [3;+∞)
Объяснение:
Решается с применением теоремы: биссектриса, опущенная на сторону треугольника, делит её на отрезки в сотношением, равным отношению двух других сторон треугольника.
1)
пусть Х - длина отрезка AD:
AD = х, тогда СD = (20 - х).
Составим пропорцию по теореме:
\begin{gathered}\frac{AD}{DC}=\frac{AB}{BC}\\ \frac{x}{20-x}=\frac{10}{15}\\ 15x = 10(20-x)\\ 15x = 200-10x\\ 15x + 10x = 200\\ 25x = 200\\ x = 8\\ AD=8 \\ DC=12\\\end{gathered}
DC
AD
=
BC
AB
20−x
x
=
15
10
15x=10(20−x)
15x=200−10x
15x+10x=200
25x=200
x=8
AD=8
DC=12
2)
Составим пропорцию по теореме:
\begin{gathered}\frac{AD}{DC}=\frac{AB}{BC}\\ \frac{8}{5}=\frac{16}{BC}\\ BC = \frac{16*5}{8}\\ BC = 10\\\end{gathered}
DC
AD
=
BC
AB
5
8
=
BC
16
BC=
8
16∗5
BC=10
3)
пусть Х - длина отрезка AD:
AD = х, тогда СD = (х+1).
Составим пропорцию по теореме:
\begin{gathered}\frac{AD}{DC}=\frac{AB}{BC}\\ \frac{x}{x+1}=\frac{2}{7}\\ 7x = 2(x+1)\\ 7x = 2x+2\\ 5x = 2 \\ x = 0.4\\ AD=0.4 \\ DC=1.4\\ AC=AD+DC=0.4+1.4=1.8\\\end{gathered}
DC
AD
=
BC
AB
x+1
x
=
7
2
7x=2(x+1)
7x=2x+2
5x=2
x=0.4
AD=0.4
DC=1.4
AC=AD+DC=0.4+1.4=1.8