М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
umkhaev013suleiman
umkhaev013suleiman
20.04.2023 10:59 •  Геометрия

скласти рівняння сфери з радіусом рівним 3 якщо її центр лежить на осі Oz, а cама сфера проходить через точку А(-2,-2,1).​

👇
Ответ:
Vasyliev
Vasyliev
20.04.2023

Гордійко лох

Объяснение:

Хахахахахахаха

4,5(26 оценок)
Открыть все ответы
Ответ:
Даник21
Даник21
20.04.2023

1) квадрат; 2) прямоугольник; 3) параллелограмм; 4) равнобочная трапеция

Объяснение:

Находим длины сторон четырёхугольника по формуле

d = \sqrt{(x_{2} - x_{1} )^{2}+ (y_{2} - y_{1} )^{2}}

1) A(-2; 0),  B(0; -2),   C(2; 0),   D(0; 2)

AB = \sqrt{(0 + 2 )^{2}+ (-2+0)^{2}} = 2\sqrt{2}

BC = \sqrt{(2 - 0 )^{2}+ (0+2)^{2}} = 2\sqrt{2}

CD = \sqrt{(0 - 2 )^{2}+ (2-0)^{2}} = 2\sqrt{2}

AD = \sqrt{(0 + 2 )^{2}+ (2-0)^{2}} = 2\sqrt{2}

Четырёхугольник, у которого все стороны равны, является ромбом.

Найдём длины диагоналей ромба

AC = \sqrt{(2 + 2 )^{2}+ (0+0)^{2}} = 4

BD = \sqrt{(0 -0 )^{2}+ (2+2)^{2}} = 4

Ромб, диагонали которого равны, является квадратом.

АВСD - квадрат

2) A(-2; 1),  B(2; -1),   C(3; 1),   D(-1; 3)

AB = \sqrt{(2 + 2 )^{2}+ (-1-1)^{2}} = \sqrt{16+4}=2\sqrt{5}

BC = \sqrt{(3-2 )^{2}+ (1+1)^{2}} = \sqrt{1+4} =\sqrt{5}

CD = \sqrt{(-1-3)^{2}+ (3-1)^{2}} = \sqrt{16+4} =2\sqrt{5}

AD = \sqrt{(-1 + 2 )^{2}+ (3-1)^{2}} = \sqrt{1+4} =\sqrt{5}

Четырёхугольник, у которого противоположные стороны попарно равны, является параллелограммом.

Найдём длины диагоналей параллелограмма

AC = \sqrt{(3 + 2 )^{2}+ (1-1)^{2}} = 5

BD = \sqrt{(-1-2)^{2}+ (3+1)^{2}} = 5

Параллелограмм, диагонали которого равны, является прямоугольником.

АВСD - прямоугольник

3) A(-2; 1),  B(2; 2),   C(1; 4),   D(-3; 3)

AB = \sqrt{(2 + 2 )^{2}+ (2-1)^{2}} = \sqrt{16+1}=\sqrt{17}

BC = \sqrt{(1-2)^{2}+ (4-2)^{2}} = \sqrt{1+4} =\sqrt{5}

CD = \sqrt{(-3-1)^{2}+ (3-4)^{2}} = \sqrt{16+1} =\sqrt{17}

AD = \sqrt{(-3 + 2 )^{2}+ (3-1)^{2}} = \sqrt{1+4} =\sqrt{5}

Четырёхугольник, у которого противоположные стороны попарно равны, является параллелограммом.

Найдём длины диагоналей параллелограмма

AC = \sqrt{(1 + 2 )^{2}+ (4-1)^{2}} =\sqrt{9+9}= 3\sqrt{2}

BD = \sqrt{(-3-2)^{2}+ (3-2)^{2}} = \sqrt{25+1}=\sqrt{26}

Диагонали параллелограмма имеют различную длину.

АВСD - параллелограмм                  

4) A(-2; -1),  B(2; -1),   C(1; 2),   D(-1; 2)

AB = \sqrt{(2 + 2 )^{2}+ (-1+1)^{2}} = 4

BC = \sqrt{(1-2)^{2}+ (2+1)^{2}} = \sqrt{1+9} =\sqrt{10}

CD = \sqrt{(-1-1)^{2}+ (2-2)^{2}} = 2

AD = \sqrt{(-1 + 2 )^{2}+ (2+1)^{2}} = \sqrt{1+9} =\sqrt{10}                  

Уравнение прямой, содержащей сторону АВ  у =  -1, а уравнение прямой, содержащей сторону CD, у = 2. Следовательно АВ║ СD.

Запишем уравнение прямой, содержащей сторону ВС:

\dfrac{x-2}{1-2}=\dfrac{y+1}{2+1}

3x - 6 = -y - 1

y = -3x + 5

Запишем уравнение прямой, содержащей сторону AD:

\dfrac{x+2}{-1+2}=\dfrac{y+1}{2+1}

3x + 6 = y + 1

y = 3x + 5

Очевидно, что ВС ∦ AD

Четырёхугольник, у которого две противоположные стороны параллельны, а две другие не параллельны, является трапецией.

Видим, что  боковые стороны трапеции ВC = AD

АВСD - равнобочная трапеция

4,7(21 оценок)
Ответ:
juljadob54
juljadob54
20.04.2023

1) квадрат; 2) прямоугольник; 3) параллелограмм; 4) равнобочная трапеция

Объяснение:

Находим длины сторон четырёхугольника по формуле

d = \sqrt{(x_{2} - x_{1} )^{2}+ (y_{2} - y_{1} )^{2}}

1) A(-2; 0),  B(0; -2),   C(2; 0),   D(0; 2)

AB = \sqrt{(0 + 2 )^{2}+ (-2+0)^{2}} = 2\sqrt{2}

BC = \sqrt{(2 - 0 )^{2}+ (0+2)^{2}} = 2\sqrt{2}

CD = \sqrt{(0 - 2 )^{2}+ (2-0)^{2}} = 2\sqrt{2}

AD = \sqrt{(0 + 2 )^{2}+ (2-0)^{2}} = 2\sqrt{2}

Четырёхугольник, у которого все стороны равны, является ромбом.

Найдём длины диагоналей ромба

AC = \sqrt{(2 + 2 )^{2}+ (0+0)^{2}} = 4

BD = \sqrt{(0 -0 )^{2}+ (2+2)^{2}} = 4

Ромб, диагонали которого равны, является квадратом.

АВСD - квадрат

2) A(-2; 1),  B(2; -1),   C(3; 1),   D(-1; 3)

AB = \sqrt{(2 + 2 )^{2}+ (-1-1)^{2}} = \sqrt{16+4}=2\sqrt{5}

BC = \sqrt{(3-2 )^{2}+ (1+1)^{2}} = \sqrt{1+4} =\sqrt{5}

CD = \sqrt{(-1-3)^{2}+ (3-1)^{2}} = \sqrt{16+4} =2\sqrt{5}

AD = \sqrt{(-1 + 2 )^{2}+ (3-1)^{2}} = \sqrt{1+4} =\sqrt{5}

Четырёхугольник, у которого противоположные стороны попарно равны, является параллелограммом.

Найдём длины диагоналей параллелограмма

AC = \sqrt{(3 + 2 )^{2}+ (1-1)^{2}} = 5

BD = \sqrt{(-1-2)^{2}+ (3+1)^{2}} = 5

Параллелограмм, диагонали которого равны, является прямоугольником.

АВСD - прямоугольник

3) A(-2; 1),  B(2; 2),   C(1; 4),   D(-3; 3)

AB = \sqrt{(2 + 2 )^{2}+ (2-1)^{2}} = \sqrt{16+1}=\sqrt{17}

BC = \sqrt{(1-2)^{2}+ (4-2)^{2}} = \sqrt{1+4} =\sqrt{5}

CD = \sqrt{(-3-1)^{2}+ (3-4)^{2}} = \sqrt{16+1} =\sqrt{17}

AD = \sqrt{(-3 + 2 )^{2}+ (3-1)^{2}} = \sqrt{1+4} =\sqrt{5}

Четырёхугольник, у которого противоположные стороны попарно равны, является параллелограммом.

Найдём длины диагоналей параллелограмма

AC = \sqrt{(1 + 2 )^{2}+ (4-1)^{2}} =\sqrt{9+9}= 3\sqrt{2}

BD = \sqrt{(-3-2)^{2}+ (3-2)^{2}} = \sqrt{25+1}=\sqrt{26}

Диагонали параллелограмма имеют различную длину.

АВСD - параллелограмм                  

4) A(-2; -1),  B(2; -1),   C(1; 2),   D(-1; 2)

AB = \sqrt{(2 + 2 )^{2}+ (-1+1)^{2}} = 4

BC = \sqrt{(1-2)^{2}+ (2+1)^{2}} = \sqrt{1+9} =\sqrt{10}

CD = \sqrt{(-1-1)^{2}+ (2-2)^{2}} = 2

AD = \sqrt{(-1 + 2 )^{2}+ (2+1)^{2}} = \sqrt{1+9} =\sqrt{10}                  

Уравнение прямой, содержащей сторону АВ  у =  -1, а уравнение прямой, содержащей сторону CD, у = 2. Следовательно АВ║ СD.

Запишем уравнение прямой, содержащей сторону ВС:

\dfrac{x-2}{1-2}=\dfrac{y+1}{2+1}

3x - 6 = -y - 1

y = -3x + 5

Запишем уравнение прямой, содержащей сторону AD:

\dfrac{x+2}{-1+2}=\dfrac{y+1}{2+1}

3x + 6 = y + 1

y = 3x + 5

Очевидно, что ВС ∦ AD

Четырёхугольник, у которого две противоположные стороны параллельны, а две другие не параллельны, является трапецией.

Видим, что  боковые стороны трапеции ВC = AD

АВСD - равнобочная трапеция

4,4(73 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ