Высоты тупоугольного треугольника, проведенные из вершин острых углов, пересекают прямые, содержащие их стороны, вне треугольника.
Рассмотрим прямоугольные ∆ АСА1 и ∆ ВСВ1.
Острые углы при С у них равны как вертикальные.
Если прямоугольные треугольники имеют равный острый угол, то такие треугольники подобны. ⇒
∆ АСА1 ~ ∆ ВСВ1
Тогда синусы их равных углов равны, т.е. отношение сходственных катетов к гипотенузам, равно. СА1/ АС=СВ1/ВС
III признак подобия треугольников.
Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, заключенные между этими сторонами, равны, то такие треугольники подобны. Доказано.
Відповідь:
Пояснення:
х+9х=180°;- як суміжні кути
10х=180°;
х=180°:10;
х=18°
так як ∠х та∠18°- зовнішні навхрест лежащі кути і вони рівні, то за ознакою паралельності прямих а║b