Положим что CAB=a ,тогда из условия CEA=a. Выразим углы CIM , CKI через a , ACE=180-2a , так как ACB=90 , то BCE=90-(180-2a)=2a-90 , CL-биссектриса , значит EC=KCI=BCE/2=a-45 , аналогично CEL=CEB/2=(180-CEA)/2=90-(a/2) , значит CIK=ECI+CEI=45+(a/2) , откуда CKI=180-(3a/2). То есть углы в треугольнике IKC равны I=a/2+45 , C=a-45 , K=180-(3a/2) По условию IKC равнобедренный , значит надо проверить три условия равенства углов 1) I=C 2) C=K 3) I=K Подходит только I=K (решая уравнения) , откуда a=135/2 Найдём угол CLK=180-(a-45+180-a)=45 . Получаем AC/sin45=CL/sina CL/AB=AC*sina/(AB*sin45)=2*cosa*sina/sqrt(2)=sin(2a)/sqrt(2)=sin135/sqrt(2)=1/2 ответ CL/AB=1/2
Пусть данный треугольник ABC, в нем опущены высоты AK и BN, ортоцентр - O. Нарисуем точку, симметричную O относительно BC: продолжим OK на отрезок, равный OK, за точку K. Обозначим полученную точку L. Теперь необходимо доказать, что ablc - вписанный пусть ∠obk = a Δobl - равнобедренный, тк bk - высота и медиана => ∠kbl = ∠obk = a из Δbnc ∠nbc = 90 - ∠bcn из Δakc ∠kac = 90 - ∠kcn ∠kcn и ∠bcn - один и тот же угол => ∠kac = ∠nbc = a ∠lac = ∠cbl = a => они опираются на одну дугу и ablc - описанный => точка l - лежит на окружности, описанной около abc. оставшиеся 2 точки доказываются абсолютно аналогично
Выразим углы CIM , CKI через a , ACE=180-2a , так как ACB=90 , то BCE=90-(180-2a)=2a-90 , CL-биссектриса , значит EC=KCI=BCE/2=a-45 , аналогично CEL=CEB/2=(180-CEA)/2=90-(a/2) , значит CIK=ECI+CEI=45+(a/2) , откуда CKI=180-(3a/2).
То есть углы в треугольнике IKC равны
I=a/2+45 , C=a-45 , K=180-(3a/2)
По условию IKC равнобедренный , значит надо проверить три условия равенства углов
1) I=C
2) C=K
3) I=K
Подходит только I=K (решая уравнения) , откуда a=135/2
Найдём угол CLK=180-(a-45+180-a)=45 . Получаем
AC/sin45=CL/sina
CL/AB=AC*sina/(AB*sin45)=2*cosa*sina/sqrt(2)=sin(2a)/sqrt(2)=sin135/sqrt(2)=1/2
ответ CL/AB=1/2