1. , где n - градусная мера соответственного центрального угла. Найдем радиус окружности: , где S - площадь круга. Найдем длину дуги: ответ: см. 2. Найдем сторону квадрата a: Радиус вписанной в квадрат окружности равен: , где a - сторона квадрата. Площадь вписанного треугольника равна: , где c - сторона правильного треугольника. Необходимо найти сторону правильного треугольника. Так как нам известен радиус описанной около треугольника окружности, то воспользуемся формулой: Найдем площадь правильного треугольника: . ответ: см.
Х=0 это ось оу, у=0 - это ось ох. 4х-3у-24=0 построим данную прямую. -3у=24-4х=-8+4х/3 или у= 4х/3-8. это уравнение прямой, которая задается двумя точками. при х=0 у=-8 при х=3 у=-4. эта прямая находится в 4 четверти. провели декартову прямоугольную систему координат, навели более жирным положительную ось ох, відємну ось оу, и по координатам которые мы нашли построили третью прямую. образовался прямоугольный треугольник. его диаметр=4, поскольку диаметр по правилу= от суммы катетов надо - гипотенузу. координаты центра(2;-2). уравнение окружности (х-2) в квадрате+ (у+2)в квадрате =4.
√13 см.
Объяснение:
меньшие стороны прямоугольного треугольника - его катеты, тогда по теореме Пифагора
с² = а² + b² = 2² + 3² = 13
c = √13 см - длина гипотенузы, большей стороны треугольника.