АВС прямоугольный треугольник. если угол А=60, а В=30, значит С=90. Т.к. АС лежит напротив угла в 30 градусов, то значит АС равна половине гипотинузы. Значит АВ=4*2=8
Пусть ∠NKL = ∠MKP = φ - π/2 = α; неизвестная площадь NKM = s; a - s = KL*KN*sin(α)/2; b - s = KM*KP*sin(α)/2; если это перемножить, то (a - s)*(b - s) = KL*KN*KM*KP*(sin(α))^2/4 = a*b*(sin(α))^2; (a - s)*(b - s) = a*b*(sin(α))^2; осталось решить квадратное уравнение s^2 - (a + b)*s + a*b*(cos(α))^2 = 0; s = (a + b)/2 +- √((a + b)^2 - a*b*(cos(α))^2); s = (a + b)/2 +- √(a^2 + b^2)/2 + a*b*(sin(α))^2); Осталось понять, какой оставить знак. s = (a + b)/2 - √(a^2 + b^2)/2 + a*b*(cos(φ))^2);
я нашел частный случай, очень легкий, и по нему можно понять, что остается именно "минус". Пусть α = π/6; и сам треугольник KLM имеет угол L = π/6; оба треугольника получаются одинаковые, и их пересечение имеет площадь a/2, то есть s = (a + b)/4
А) Если вершины квадрата MNKP делят каждую сторону квадрата ABCD в отношении 3:4, то каждая из его сторон разделена на 2 части, равные: (28/ (3+4))*3 = 12 см и (28/ (3+4))*4 = 16 см . Между сторонами треугольников АВСД и MNKP образуются треугольники. где гипотенузой являются стороны квадрата MNKP, а катетами - отрезки сторон квадрата АВСД по 12 и 16 см. Отсюда сторона квадрата MNKP равна √(12²+16²) = √(144+256) = √400 = 20 см. б) Чтобы найти сторону квадрата ABCD, если MN=10 см, примем её за х. Тогда катеты в рассмотренных ранее треугольниках будут равны (3/7)х и (4/7х. По Пифагору ((3/7)х)² + ((4/7х)² = 10² (9/49)х²+(16/49)х² = 100 25х² = 100*49 х² = 4*49 х = 2*7 = 14 см.
треугольник прямоугольные, т к 180 - 60 - 30 = 90, третий угол прямой.
ав = 8, т к катет лежащий напротив угла в 30 градусов равен половине гипотенузы и равен 4.