Запишем формулу для нахождения радиуса окружности, описанной около правильного многоугольника:
R=a/(2sin×(180°/n)),
где а - длина стороны многоугольника, n – количество сторон правильного многоугольника.
Нам дан шестиугольник, значит n=6.
Найдем угол:
180°:6=30°.
Используя тригонометрическую таблицу, найдем sin(30°):
sin(30°)=1/2.
Перепишем формулу для радиуса описанной окружности:
R=a/(2×1/2)=а/1=а.
Значит, радиус описанной около правильного шестиугольника окружности, стороне шестиугольника:
R=3 см.
ответ: R=3 см.
Если продлить боковые стороны до пересечения, то получится прямоугольный треугольник.
Если есть прямоугольная система координат XOY (внимание - буквой O обозначено начало кооринат, а не центр окружности! в применении к задаче - это точка пересечения AB и CD) и окружность, касающаяся оси OY и пресекающая ось OX в 2 точках, то её уравнение в самом общем виде (x - R)^2 + (y - a)^2 = R^2; точка (R, a) - центр.
=> x^2 - 2xR + (y-a)^2 = 0; при y = 0; x^2 - 2xR + a^2 = 0;
корни R - √(R^2 - a^2) и R + √(R^2 - a^2); пусть эти точки совпадают с точками A и B в условии, тогда при AB = 11
2√(R^2 - a^2) = 11;
Еще неиспользованное условие - AD/DC = 3/2; из того, что треугольники OBC и OAD подобны (я напоминаю, что буквой O я обозначил начало координат, а не центр окружности), ясно, что OA/OB = 3/2; или
(R + √(R^2 - a^2))/(R - √(R^2 - a^2)) = 3/2;
ну вот, по смыслу задача решилась, и ответ гораздо ближе, чем кажется :) потому что
простая подстановка дает
(R + 11/2)/(R - 11/2) = 3/2; => R = 55/2;
Центр окружности лежит на пересечени высот, которые относятся 2/1 считая от вершины, мы обозначим их как х и 2х, то что 2х это радиус. В раврностороннем треугольнике высота, это медиана и бессиктриса, так что она делит основание на два, соответстаенно пол основания это 6. Теперь по теореме пифагора высота= корень из12 в квадрате- 6 в квадрате, корень из 144- 36, равно корень из 108, но это вся высота а нам надо две части, поэтому:3х=корень из 108, х=корень из 108/3, 2х= 2 корня из 108\3, теперь диаметр в 2 р больше радиуса так что он =4 корня из 108\3.