а - сторона ромба
периметр
Р = 4 а = 52
а = 52/4 = 13 см
Диагонали ромбы d1 и d2 перпендикулярны = >
d1 / d2 = 5 / 12 или d1 = 5d2 / 12
Cтороны прямоугольных треугольников, образуемых диагоналями, будут ^
d1/2, d2/2 - катеты
а - - гипотенуза (она же сторона ромба)
По теореме пифагора
(d1/2) ^2 + (d2/2) ^2 = a^2
d1^2 + d2^2 = 4a^2
(5d2 / 12) ^2 + d2^2 = 13^2
25d2^2 + 144d2^2 = 13^2 * 12^2
169d2^2 = (13^2*12^2
13^2 d2^2 = 13^2 * 12^2
d2^2 = 12^2
d2 = 12 см - вторая диагональ
d1 = 5d2 / 12 = 5 * 12 / 12 = 5 - первая диагональ
ответ: диагонали d1=5 cм, d2 = 12 см
А) нет, т. к. если одна из параллельных прямых пересекает плоскость, то и вторая прямая пересечёт эту плоскость.
б) могут.
Пусть в плоскости ą лежит прямая с||а, b пересекает плоскость ą в точке, принадлежащей прямой с. Тогда, если прямая пересекает одну из двух параллельных прямых, то она пересечёт и вторую.
в) могут. Т. к. а||плоскости альфа, то существует плоскость ß, в которой лежит а. если одна из 2 прямых лежит в некоторой плоскости (в данном случае прямая а), а другая прямая (прямая b) пересекает эту плоскость в точке, не лежащей на первой прямой, то эти прямые скрещивающиеся.