Обозначим диаметр как СД. Продолжим прямые АМ и ВМ до второго их пересечения с окружностью в точках К и Р соответственно. Так как ∠АМС=∠BМД по условию, ∠АМС=∠ДМК и ∠СОР=∠ВОД как вертикальные, то ∠АОС=∠СОР и ∠ВОД=∠ДОК. Диаметр СД делит окружность на две равные полуокружности, в которых есть две пары равных дуг. ∩АС=∩СР и ∩ВД=∩ДК, значит ∩АВ=∩КР. Если точка пересечения двух секущих к окружности находится внутри окружности, то угол между секущими равен полусумме дуг, которые они высекают. АК и ВР - секущие, М - точка их пересечения. ∠АМВ=(∩АВ+∩КР)/2=2·∩АВ/2=∩АВ. ∩АВ=∠АОВ ⇒ ∠АОВ=∠АМВ. Доказано.
1) У равнобедренного треугольника есть ось симметрии. 3) Площадь трапеции равна произведению средней линии на высоту. 2) Любой квадрат можно вписать в окружность. 3) Сумма квадратов диагоналей прямоугольника равна сумме квадратов всех его сторон.
1) Через точку, не лежащую на данной прямой, можно провести прямую, перпендикулярную этой прямой.
2) Если при пересечении двух прямых третьей прямой сумма внутренних односторонних углов равна 180°,то эти прямые параллельны. 1) Вокруг любого треугольника можно описать окружность. 3) Если в ромбе один из углов равен 90°, то такой ромб -.квадрат. 1) Если при пересечении двух прямых третьей прямой накрест лежащие углы равны, то прямые параллельны.
2) Существует параллелограмм, который не является прямоугольником. 3) Сумма углов тупоугольного треугольника равна 180°.
Продолжим прямые АМ и ВМ до второго их пересечения с окружностью в точках К и Р соответственно.
Так как ∠АМС=∠BМД по условию, ∠АМС=∠ДМК и ∠СОР=∠ВОД
как вертикальные, то ∠АОС=∠СОР и ∠ВОД=∠ДОК.
Диаметр СД делит окружность на две равные полуокружности, в которых есть две пары равных дуг. ∩АС=∩СР и ∩ВД=∩ДК, значит ∩АВ=∩КР.
Если точка пересечения двух секущих к окружности находится внутри окружности, то угол между секущими равен полусумме дуг, которые они высекают.
АК и ВР - секущие, М - точка их пересечения. ∠АМВ=(∩АВ+∩КР)/2=2·∩АВ/2=∩АВ.
∩АВ=∠АОВ ⇒ ∠АОВ=∠АМВ.
Доказано.