Получается равносторонний треугольник со стороной АB. Одна вершина треугольника лежит в центре окружности, остальные две лежат на окружности. Хорда из точки А строится элементарно по определению хорды. Задача решается при циркуля и угольника.
Строим так. Берем циркулем величину АВ. Рисуем окружность. Иголка циркуля стоит в центре О, грифель на некоторой точке окружности, которую теперь будем считать точкой А. Вынимаем иголку из центра (аккуратно, чтобы не сбросить взятую величину), ставим ее в точку А. Поворачиваем циркуль до пересечения грифеля с окружностью. Это будет точка В. Соединяем центр и точки А, В, получаем равносторонний треугольник. Хорда из точки А строится при угольника.
Если положение отрезка фиксировано в пространстве, то см. ответ ниже. Центр окружности будет лежать на серединном перпендикуляре.
Объяснение:
а) F = 60°
б) К = 90°, O = 40°
c) Q =80°, R = 80°
1) B = 100°
2) A = 70°, C = 70°
3) A = 50°, B = 60°, C = 70°
4) C = 90°, B = 60°
5) A = 40°, B = 50°, C = 90°
6) A = 40°, B = 35°