У реченнях зробіть будь ласка питання та заперечення в present continuous, past continuous, past simple. 1) They were dancing all evening. 2) I often swim in summer. 3) He likes jogging. 4) I had lund yesterday.
Так как A внутри BCD, AB=AD, то BAD - тоже равнобедренный треугольник, и у него общее с BCD основание BD. Поставим точку K так, что BK=KD, тогда KC - медиана BCD, KA - медиана BAD. Докажем второй пункт. Как известно, высота равнобедренного треугольника совпадает с его медианой и биссектрисой и является его осью симметрии. Также, любые два равнобедренных треугольника, построенные на одном основании, обладают общей осью симметрии и, как следствие, общей высотой/медианой/биссектрисой. Тогда получаем, что KA⊂KC и все три точки лежат на KC. Это автоматически доказывает первый пункт, т.к. непонятные ∠ACB и ∠ACD превращаются в углы при биссектрисе ∠KCB=∠KCD, которые равны между собой.
По определению синус угла равен отношению противолежащего катета к гипотенузе)) нужно построить прямой угол (две перпендикулярные прямые) --это будет первая вершина треугольника, от вершины прямого угла отложить отрезок, равный 3 см (или 6 мм, или 9 метров...), обозначить вершину А --это будет вторая вершина треугольника, из точки А раствором циркуля, равным 5 см (или 10 мм, или 15 метров соответственно) провести окружность, точка пересечения окружности со второй прямой будет третьей вершиной треугольника и вершиной нужного угла (обозначить В), АВ - гипотенуза... 2) аналогично... катет равен 1 (противолежащий углу), гипотенуза = 2
Докажем второй пункт. Как известно, высота равнобедренного треугольника совпадает с его медианой и биссектрисой и является его осью симметрии. Также, любые два равнобедренных треугольника, построенные на одном основании, обладают общей осью симметрии и, как следствие, общей высотой/медианой/биссектрисой. Тогда получаем, что KA⊂KC и все три точки лежат на KC.
Это автоматически доказывает первый пункт, т.к. непонятные ∠ACB и ∠ACD превращаются в углы при биссектрисе ∠KCB=∠KCD, которые равны между собой.