Рисунок - во вложении.
Т.к. E и F - внутренние точки отрезка АВ, и по условию АЕ=BF, то
для EB=AB-AE и для AF=AB-BF следует, что EB=AF.
Рассмотрим прямоугольные ΔADF и ΔВСЕ. У них: 1) АD=BC (противолежащие стороны прямоугольника); 2) AF=EB (по доказанному выше). Значит, ΔADF = ΔВСЕ по двум катетам.
Из равенства этих треугольников следует, что ∠DFA=∠СЕВ. Отсюда, ΔEGF - равнобедренный с основанием EF, тогда GF=GE. Доказан пункт Б).
Т.к. АВСD - прямоугольник, то АВ║CD. Тогда ∠EFG=∠GDC(как накрестлежащие при секущей FD) и ∠FEG=∠GCD (как накрестлежащие при секущей ЕС). Отсюда, ΔDGС - равнобедренный с основанием DC, тогда DG=GC. Доказан пункт A).
в прямоугольном треугольнике АВД угол А = 90 - 40 = 50 гр в прямоугольном треугольнике ВДС угол С = 90 - 10 = 80гр тогда получаем, что в треугольнике АВС углы равны 50, 50 и 80 градусов. так как в тр-ке два угла равны, то он равнобедренный АВ - основание высоты тр-ка пересекаются в точке О, рассмотрим тр-ик СДО он прямоугольный, т.к ВД высота по условию. угол С = 40гр (80 : 2 - высота, проведенная к основанию является биссектрисой) угол ВОС это внешний угол тр-ка СДО. внешний угол треугольника равен сумме углов не смежных с ним, т.е Угол ВСО = угол С + угол Д = 40 + 90 = 130гр