Это полезная задача. Я, правда, делал её тут раз 100. По сути, достаточно найти площадь, есть формула Герона, по ней все считается. p = (13 + 14 + 15)/2 = 21; p - 13 = 8; p - 14 = 7; p - 15 = 6; S^2 = 21*8*7*6 = 7^2*6^2*4 = 84^2; S = 84; Отсюда по известным формулам R = 13*14*15/(4*84) = 65/8; r = 84/21 = 4;
Это такой метод "для тупых". Такие решения ждут от вас ваши учителя. Можно переписать в тетрадку и забыть. Но есть и которым площадь S находится устно. Достаточно сообразить, что если взять два прямоугольных треугольника со сторонами (5,12,13) и (9,12,15), то из них можно составить треугольник, заданный в задаче (а как? :)) Поэтому СРАЗУ ЯСНО, что высота к стороне 14 равна 12, и площадь S = 14*12/2 = 84; устная задача. Еще одна вещь полезная - поскольку треугольник "ПОЧТИ РАВНОСТОРОННИЙ", 2r = 8 "очень мало" отличается от R. Всего на 1/8; это хороший контроля за ошибками (R/2r = 1,015625, то есть всего на 1,5% отличается от 1). Если бы получилось, что 2r и R сильно различаются, то самое время было бы искать арифметические ошибки.
В равнобедренном треугольнике высота, проведенная к основанию, совпадает с биссектрисой и медианой(что нам нужно). Так как медиана делит основание пополам, то треугольники, образуемые половинами основания и отрезками, проведенными из произвольной точки на высоте, являются в любом случае равными по двум сторонам и углу между ними (в нашем случае одна сторона - это половина основания, разделенного высотой(медианой), вторая сторона общая - высота, а угол между ними - 90 градусов в одном и во втором случае (так как это высота). А соответственные стороны равных треугольников равны. Поэтому где бы мы ни взяли эту произвольную точку, отрезки (расстояние)от нее до вершин при основании будут равны
если tg(Ф) = корень(2)/4, то sin(Ф) = 1/3;(а cos(Ф) = 2*корень(2)/3; но нам это не понадобится)
сторона 24/4 = 6,
площадь 6^2*(1/3) = 12