М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Kikookiko
Kikookiko
14.08.2020 09:47 •  Геометрия

Найти сторону правильного шестиугольника, если радиус окружности, вписанной в этот шестиугольник, равен 4 см.

👇
Ответ:
Zender111
Zender111
14.08.2020

ответ: 8√3/3. 32√3

Объяснение:

r=a*√3/2

a=4*2/√3=8√3/3

S=a^2*3√3/2

S=64*√3/2=32√3

4,6(60 оценок)
Ответ:
даша3643
даша3643
14.08.2020
Для решения этой задачи, нам понадобится знание основной формулы, связывающей радиус вписанной окружности и сторону правильного шестиугольника.

Формула гласит: S = 2r * tsin(π/6), где S - сторона шестиугольника, r - радиус вписанной окружности, t - тангенс угла в справедливом шестиугольнике.

Давайте рассмотрим ее применение к нашей задаче:

1. Нам дано, что радиус вписанной окружности равен 4 см, т.е. r = 4 см.

2. Теперь найдем тангенс угла в правильном шестиугольнике. Угол в правильном шестиугольнике составляет 180 градусов, а также мы знаем, что угол при вершине шестиугольника равен 60 градусов. Таким образом, дополнительный угол в прямоугольном треугольнике, образованном радиусом вписанной окружности, составляет 180 - 60 = 120 градусов.

3. Вычислим тангенс этого угла. Раскладывая тангенс на отношение синуса и косинуса, имеем: t = tg(120) = sin(120)/cos(120) = √3 / -1/2 = -2√3.

4. Подставляем известные значения в формулу стороны: S = 2 * 4 * (-2√3) = -16√3 см.

5. Ответ. Сторона правильного шестиугольника равна -16√3 см. Обратите внимание, что ответ отрицательный. Это говорит о том, что мы получили длину, направленную в противоположную сторону вписанной окружности. В данном случае, сторона шестиугольника будет направлена наружу, от центра окружности.

Таким образом, радиус вписанной окружности равный 4 см, соответствует стороне правильного шестиугольника длиной -16√3 см.
4,7(77 оценок)
Проверить ответ в нейросети
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ