Задача 2 окружность разделена на 2 дуги -одна содаржит 4 части ,другая -5 частей ,следовательно обе дуги ,составляют 9 частей и360 градусов .Поэтому одна часть равна 360 :9= 40 градусов следовательно меньшая дуга равна 40х4= 160 градусов 2) Точки А и С -точки касания окружности с углом АВС из центра окружности проведем радиусы в точки касания они перпендикулярны сторонам угла АВС .3)угол АОС -центральный ,он измеряется дугой на которую опирается .уголАОС=160 градусов .4)соединим точки ОиВ прямой ОВ .эта прямая делитугол АВС пополам,уголВОС=80 ,УГОЛосв=90 ПОЭТОМУ УГОЛовс 10 градусов но ВО -биссектриса угла АВС следовательно АВС-20градусам (читай теорию про окружность)
ВН=h -высота параллелограмма, ВD - другая диагональ параллелограмма. Пусть одна часть равна х, тогда по условию АМ=3х, МD=2х. Диагональ ВD делит его на два равных треугольника, площади которых также равны, S(АВD)=S(ВСD)= 30 см². Высота ВН разделила ΔАВD на два треугольника с одной высотой h. Определим площадь каждого из этих треугольников. S(АВН)=0,5·АМ·ВМ=0,5·3х·h=1,5хh. S(ВМН)=0,5·МD·ВН=0,5·2х·h=хh Сумма площадей этих треугольников равна площади ΔАВD=30 см². 1,5хh+хh=30, 2,5хh=30, h=30/2,5х=12/х. Вычислим площадь ΔАВМ. S(АВМ)=0,5·АМ·h=0,5·3х·12/х=0,5·3·12=18 см². ответ: 18 см².