1)
Δ АСВ – прямоугольный.
По теореме Пифагора
АВ2=AC2+BC2=225+400=625
AB=25
Проводим высоту СН прямоугольного Δ АСВ
СH– проекция MH
CН⊥АВ, по теореме о трех перпендикуярах MH ⊥АВ
Расстояние от вершины M до АВ и есть МН,
Из формула площади прямоугольного треугольника АСВ
S=1/2·АС·ВС
и
S=(1/2)·АВ·СН
СН=АС·ВС/АВ=20·15/25=12
Из прямоугольного треугольника МСН прямоугольный
МН=СН/сos 60 °=12/0,5=24
О т в е т. Расстояние от вершины пирамиды до прямой АВ равно 24 см.
2)
Из прямоугольного треугольника МСН прямоугольный
МC2=MH2–CH2=242–122=432
MC=12√3
S=S Δ MBC+S Δ MAB+S Δ MAD+S Δ MDC+S(ABCD)
S Δ MBC=(1/2)BC·CD=(1/2)·20·12√3=
S Δ MAB=(1/2)AB·CH=(1/2)·25·12=150
CK⊥АD
CK=AB·CH/AD=25·12/20=15
S Δ MAD= (1/2)AD·CK=(1/2)20·15=150
S Δ MDC=(1/2)CD·MC=(1/2)·25·12√3=
S(ABCD)=2S Δ ABC=2·(1/2)BC·AC=20·15=300
определим величину ребра вписанного правильного шестиугольника.
а = р / 6 = 60 / 6 = 10 см.
так как вписанный шестигранник правильный, воспользуемся формулой нахождения радиуса окружности, в которую вписан правильный многогранник.
r = a / (2 * sin(3600 / 2 * где
а – длина ребра многогранника;
n – количество граней многогранника.
r = 10 / (2 * sin(3600 / 2 * 6)) = 10 / (2 * sin300) = 10 см.
воспользуемся этой же формулой для вписанного квадрата.
10 = а / (2 * sin(3600 / 2 * 4)) = a / (2 * sin450).
а = 10 * 2 * sin450 = 20 * (√2/2) = 10 * √2 см.
ответ: сторона вписанного квадрата равна 10 * √2 см.
B=6 см
По-идее еще одна буква должна быть.
Посмотри, точно условие верное.