Дан квадрат АВС1Д1. О1О2 - ось цилиндра. АВ⊥О1О2. Диагонали квадрата пересекаются наоси цилиндра в точке О. Через точку О проведём отрезок РЕ║АД1. ∠О2ОЕ=α. Сторона квадрата равна а. АЕ=ЕВ=а/2. Построим плоскость перпендикулярно оси О1О2, проходящую через сторону АВ. Проекция квадрата АВС1Д1 на эту плоскость будет прямоугольник АВСД. Диагонали прямоугольника АВСД пересекаются на оси цилиндра в точке М. Половина диагонали этого прямоугольника и есть радиус цилиндра. АМ=R. В тр-ке ЕОМ ЕМ=ОЕ·sinα=a·sinα/2 (ОЕ=РЕ/2=а/2). В тр-ке АМЕ АМ²=АЕ²+ЕМ²=(а²/4)+(а²sin²α/4)=2a²sin²α/4. AM=a√2·sinα/2 ответ: радиус цилиндра
ABCD - ромб. Угол А = углу С. АС - диагональ ромба и биссекриса углов А и С (свойство диагоналей ромба).
Рассмотрим треугольник ABC. Угол САВ = углу АСВ = 120/2 = 60 градусов, угол АВС = 180-60-60 = 60 градусов. Значит, треугольник АВС - равносторонний и АС = 4.
Треугольник АСС1 прямоугольный (угол АСС1 прямой, т.к. призма прямая). Угол САС1 = 60 градусов по условию.
Далее 2 варианта решения:
1 вариант
Из определения косинуса
По т.Пифагора из треугольника ACC1 найдём высоту призмы:
2 вариант
Из определения котангенса