Обозначим данные прямые через l0 и l, данные точки на прямой l0 - через A0, B0, C0, данные точки на прямой l - через A, B, C. Пусть l1 - произвольная прямая, не проходящая через точку A. Возьмем произвольную точку O0, не лежащую на прямых l0 и l1. Обозначим через P0 центральное проектирование прямой l0 на прямую l1 с центром в точке O0, а через A1, B1, C1 - проекции точек A0, B0, C0. Пусть l2 - произвольная прямая, проходящая через точку A, не совпадающая с прямой l и не проходящая через A1. Возьмем некоторую точку O1 на прямой AA1 и рассмотрим центральное проектирование P1 прямой l1 на l2 с центром в O1. Обозначим через A2, B2, C2 проекции точек A1, B1, C1. Ясно, что A2 совпадает с A. Наконец, пусть P2 - проектирование прямой l2 на прямую l, которое в том случае, когда прямые BB2 и CC2 не параллельны, является центральным проектированием с центром в точке пересечения этих прямых, а в том случае, когда прямые BB2 и CC2 параллельны, является параллельным проектированием вдоль одной из этих прямых. Композиция P2°P1°P0 является требуемым проективным преобразованием.
Объяснение:
пример
Дотична пряма до кола в евклідовій геометрії на площині — пряма, що дотикається до кола тільки в одній точці та не містить внутрішніх точок кола. Грубо кажучи, це пряма, яка проходить через пару нескінченно близьких точок на колі. Дотичні прямі до кола застосовуються у багатьох геометричних побудовах і доведеннях. Так як, дотична пряма до кола є перпендикуляром до радіуса кола, проведеного в точку дотику, то зазвичай теореми в яких розглядаються дотичні прямі, часто використовують у формулюванні такі радіуси або ортогональні кола.
В правильной четырехугольной пирамиде SABCD с основанием ABCD точка М середина ребра SA, точка К середина ребра SC.
Найти угол между плоскостями BMK и ABC, если AB=4, SC=6.
Основание правильной четырехугольной пирамиды - квадрат, и вершина S пирамиды проецируется в точку пересечения O диагоналей квадрата АВСD.
Все ребра правильной пирамиды равны. Т.к. М и К делят противоположные ребра пополам, ВМ=ВК.
Основание МК треугольника МВК- средняя линия треугольника АSC и поэтому делит высоту SO пирамиды пополам. Пусть это будет точка Н.
Необходимо найти величину двугранного угла между плоскостями ВМК и АВС.
(Небольшое отступление: Плоскость, содержащая треугольник МВК, пересекается с плоскостью, содержащей ∆ АВС, по ребру mk. АС и mk параллельны, ВО⊥АС и mk. НВ⊥mk по т. о трех перпендикулярах.
Величина двугранного угла равна его линейному углу. Линейным углом двугранного угла называется угол, сторонами которого являются лучи, исходящие из одной точки ребра двугранного угла и перпендикулярные ему).
–––––––––––
Искомый угол - линейный угол НВО двугранного угла между плоскостью МВК и АВС.
ВО- половина диагонали ВD
BD как диагональ квадрата равна а√2=4√2
ВО=2√2
Из ⊿ SOB по т.Пифагора
SO=√(SB² -BO²) =√(36-8)=√28=2√7
НО=SO:2=√7
tg ∠НВО=НО:ВО=(√7):2√2=(√14):4
tg ∠НВО= ≈0,9354. Это тангенс угла ≈ 43º5'