Найдём третью сторону треугольника по теореме косинусов.
Т. косинусов: Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними:
a²=b²+c²−2⋅b⋅c⋅cosA
a²=8²+ 8²−2⋅8⋅8⋅cos60°
a²=64+64 - 2·8·8·¹/₂
а² = 64
а= 8
2й решения.
2 стороны равны, значит треугольник равнобедренный. Треугольник равнобедренный, значит, углы при основании равны. Углы при основании (180-60)/2 = 60°. Все углы равны, значит, треугольник равносторонний, и третья сторона равна 8 см
А) Смотри рисунок. Рассмотрим два прямоугольных треугольника АВВ1 и ДСС1. углы АВВ1=ДСС1=90 градусов; углы ВАВ1=СДС1; ВВ1=СС1(как высоты в трапеции). Как известно, для подобия прямоугольных треугольников достаточно, чтобы они имели по равному острому углу и равному катету ⇒ ΔАВВ1=ΔДСС1 ⇒ АВ=СД⇒ трапеция АВСД - равнобедренная.
б) Смотри рисунок. Пусть точка пересечения диагоналей - это О. Рассмотрим треугольники АВО и ДСО. Углы АОВ=ДОВ( как вертикальные); по условию ВД=АС, точка О - точка пересечения⇒ ВО=ОС и АО=ОД. По первому признаку равенства треугольников ΔАВО=ΔДСО⇒АВ=СД⇒трапеция АВСД - равнобедренная.
8см
Объяснение:
1й решения.
Найдём третью сторону треугольника по теореме косинусов.
Т. косинусов: Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними:
a²=b²+c²−2⋅b⋅c⋅cosA
a²=8²+ 8²−2⋅8⋅8⋅cos60°
a²=64+64 - 2·8·8·¹/₂
а² = 64
а= 8
2й решения.
2 стороны равны, значит треугольник равнобедренный. Треугольник равнобедренный, значит, углы при основании равны. Углы при основании (180-60)/2 = 60°. Все углы равны, значит, треугольник равносторонний, и третья сторона равна 8 см