Задача
В основе прямой призмы лежит равнобедренная трапеция с острым углом 60 и боковой стороной 4 см. Диагонали трапеции являются биссектрисами острых углов. Диагональ призмы наклонена к плоскости основания под углом 45. Найти объем призмы.
Объяснение:
АВСD-трапеция,∠А=∠D=60°, АС-биссектриса ∠А, DВ-биссектриса ∠D, АВ=СD=4 см, ∠ВDВ₁=45°.
Т.к. DВ-биссектриса ∠D, то ∠АDВ=30°,
ΔАВD, ∠А=60° , ∠АDВ=30° ⇒ ∠АВD=90°. Поэтому ΔАВD-прямоугольный : tg60°=ВD/ВА или √3=ВD/4 или ВD=4√3 см
cos60°=ВА/АD или 0,5=4/АD , АD=8 см.
АD║ВС,АD-секущая ⇒ ∠АDВ=∠DВС=30° как накрест лежащие.Поэтому ΔDВС- равнобедренный и СВ=СD=4 см.
ΔВDВ₁-прямоугольный и равнобедренный( ∠ВDВ₁=45° ⇒∠ВВ₁D=45°), поэтому ВВ₁=ВD=4√3 см.
V=P(осн)*h.
V=(4+4+4+8)*4√3 =80√3 ( см³)
Для того что бы решить данную задачу нужно посмотреть на какую дугу опираются данные углы и вспомнить что вписанный угол равен половине центрального угла, а центральный угол равен величине дуги.
1) Угол ABC опирается на дугу AC, которая не включает в себя точки D и B. Величина данного угла равна 100 градусам.
2) Угол ACD опирается на дугу AD, которая не включает в себя точки C и B. Величина данного угла равна 80 градусам.
3) Угол DAC опирается на дугу DC, которая не включает в себя точку А. Величина данного угла равна ? градусам.
т.к полный круг равен 360 градусов то дуга DC равна 180, а значит угол DAC равен 90.