Смотрите, всё довольно просто :) Объясню по моему чертежу. Мы рисуем отрезок АВ. Находим середину отрезка( для простоты и удобства, советую взять отрезок 4 см. Соответственно, 2 см и будет середина). У меня середина отрезка помечена зелёным цветом. Затем, ставим, где-нибудь рядом, точку М ( она красного цвета). Берём линейку, соединяем линейкой точку М и середину отрезка. Слабо проводим линию, чтобы она была немного дальше от середины. Отмеряем расстояние от точки М до середины отрезка. И отмечаем новую точку на этом расстоянии, от середины отрезка. Допустим F. Она и будет симметрична точке М
В треугольнике АВС по теореме косинусов:
CosA= (AB²+AC²-BC²)/2*AB*AC => CosA=-1/4.
Тогда синус этого угла равен SinA=√(1-1/16)=√15/4.
Площадь треугольника ADE=(1/2)*AD*AE*SinA или
Sade=(1/2)*2*3*√15/4 = 3*√15/4 ≈ 2,9 ед².
Вариант 2.
Подобие треугольников:
Так как AD/AC=AE/AB=1/2, a <A - общий, то
ΔAED~ ΔАВС (по признаку подобия).
Коэффициент подобия k=1/2.
Sabc=√(9*5*3*1)=3√15 (по Герону: S=√(p(p-a)(p-b)(p-c), где р -полупериметр).
Площади подобных треугольников относятся как квадрат подобия.
Sade=3*√15/4 ≈ 2,9 ед².
Объяснение:
удачи что бы получи(ла) 5!))