Объяснение:
3. 1) Касательная к окружности перпендикулярна к радиусу, проведенному в точку касания,
значит ∠ ОКМ=90°-7°=83° .
2) ∆ ОКМ- равнобедренный (ОК=КМ=r) , значит ∠ОКМ=∠ОМK=83°.
4. 1) Касательная к окружности перпендикулярна к радиусу, проведенному в точку касания,
значит ∠ ОКМ=90°-84°=6°
2) ∆ ОКМ- равнобедренный (ОК=КМ=r) , значит ∠ОКМ=∠ОМK=6°.
5. ∠ ABC =90°(вписанный), т.к ∪ АС=180° (опирается на диаметр АС). Тогда ∠С=180°-90°-75°=25°
6. 1) ∪ AN=73°·2=146° (стягивает вписанный ∠ NBA). Тогда
∪ NB =∪ AB-∪AN=180°-146°=34°.
2) ∠NMB=34°/2=17° (вписанный не центральный угол)
7. 1) ∆ АОВ- равнобедренный(АО=ОВ=r), значит ∠ОАВ=∠АВО=15°. Тогда ∠ОВС =56°-15°=41°.
2) ∆ ВОС- равнобедренный(ВО=ОС=r), значит ∠ОВС=∠ВСО=41°.
8. ∆ АОВ =∆ СОD (AO=OD=r, CO=OB=r, ∠AОВ =∠CОD-вертикальные ), значит ∠ОАВ =∠ОСD=25°
...
угол-неограниченная геометрическая фигура, образованная двумя лучами, выходящими из одной точки.
треугольник- это геометрическая фигура, образованная тремя отрезками, которые соединяют три не лежащие на одной прямой точки.
биссектриса- луч с началом в вершине угла, делящий угол на два равных угла.
высота-измерение объекта или его местоположения, отмеряемое в вертикальном направлении.
медиана-отрезок внутри треугольника, соединяющий вершину треугольника с серединой противоположной стороны, а также прямая, содержащая этот отрезок.
Перпендикулярная прямая-прямая поведенная перпендикулярно к поверхности, т.е. под прямым углом
Периметр треугольника:a+b+c
Теорема о смежных угла
Два угла называются смежными, если у них одна сторона общая, а другие стороны являются дополнительными лучами.
Легко доказать следующие теоремы о смежных углах:
1. сумма смежных углов равна 180°;
2. если два угла равны, то равны и смежные им углы.
Признаки = треугольников
Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.
Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
Если три стороны одного треугольника соответственно равны трём сторонам другого треугольника, то такие треугольники равны.
2 сeкунды тому назад