Какие из следующих утверждений верны? 1) В любом треугольнике два угла- острые. 2) Существует треугольник с двумя прямыми углами. 3) Существует треугольник с двумя тупыми углами 4) Существует треугольник , сумма углов которого не равна 180ᵒ. 5) Сумма углов треугольника равна 180ᵒ.
Вот я напишу решение, не понравится, можете смело ставить нарушение. Точки пересечения биссектрис боковых граней равноудалены от центра основания. Следовательно, ВСЕ точки трех окружностей, вписанных в боковые грани, равноудалены от центра основания. Включая, разумеется, и середины ребер основания. То есть - в дополнение к сказанному - к этому множеству равноудаленных точек принадлежат и точки окружности, вписанной в основание. Это означает, что существует такая сфера, которая касается всех ребер пирамиды, и центр её лежит в центре основания. Вписанные окружности являются сечениями этой сферы плоскостями граней. Причем сечение основанием является центральным. На самом деле задача уже решена, и дальше я так коротко. Пусть пирамида ABCS, O - центр основания, AC касается сферы в точке B1, AS - в точке A2. Тогда из сказанного выше следует, что треугольники AA2O и AB1O равны (по трем сторонам). То есть ∠SAO = 30°; Пусть AC = a; AS = d; тогда a*2√3/3 = d√3/2; d = a*2/3; AB1 = a/2; => SB1 = a*√7/6; Отсюда легко выразить через a площадь боковой грани (a^2*√7/12) и ПОЛУпериметр p = a*7/6; откуда a*√7/14 = 1/√7; a = 2; Может я в арифметике ошибся где-то, проверяйте.
Cм. рисунок и обозначения в приложении По теореме косинусов (2√3)²=6²+х²-2·6·х·cos 30° 12=36+x²-6√3·x=0 x²- 6√3·x+24=0 D=108-96=12 x=(6√3-2√3)/2=2√3 или х=(6√3+2√3)/2=4√3
если х=2√3, то диагональ делит параллелограмм на два равнобедренных треугольника. Углы параллелограмма 60° и 120°
если х=4√3 то по теореме косинусов ( α - угол параллелограмма , лежащий против диагонали) 6²=(2√3)²+(4√3)²-2·2√3·4√3 ·cos α ⇒ 36=12+48-48·cosα⇒
cosα=0,5
α=60° второй угол параллелограмма 120° см. рисунок 2 ответ 120° и 60°
1) да
2) нет
3) нет
4) нет
5) да