1-Ло́маная (ломаная линия) — геометрическаяфигура, состоящая из отрезков, последовательно соединенных своими концами.
2-Ломаная — геометрическая фигура, состоящая из отрезков, последовательно соединенных своими концами. Замкнутую плоскую ломаную называют многоугольником. Вершина - вершина угла, точка пересечения двух сторон. Сторона - отрезок, соединяющий две его соседние вершины. Диагональ - линия, проведенная из одного угла в другой. Периметр - сумма длин всех сторон.
3-ыпуклым многоугольником называется многоугольник, обладающий тем свойством, что все его точки лежат по одну сторону от любой прямой, проходящей через две его соседние вершины. Это углы, образованные сторонами выпуклого многоугольника.
4-Сумма углов треугольника - 180 градусов.
Докажем, что сумма углов выпуклого n-угольника равна 180(n-2) градусам. Выберем одну из вершин и проведём из неё n-2 диагонали. Они разделят n-угольник на n-2 треугольника. Сумма углов каждого треугольника равна 180 градусам, сумма углов n-угольника равна сумме углов всех треугольников. Значит, сумма углов выпуклого n-угольника - 180(n-2) градусов, что и требовалось доказать.
Вариант 1 иначе говоря, может ли эта прогрессия состоять из ряда одинаковых членов? Запросто! Получится равносторонний треугольник. вариант 7 тут надо посмотреть. Очевидно, что сумма двух "младших" сторон треугольника должна быть больше третье стороны. Если при значении 7 такие три числа возможны, то и треугольник из них сообразим как нарисовать.
пусть меньшая сторона х, тогда средняя по длине5 будет 7х, а длиннейшая 49х
считаем неравенство х+7x>49x x+7x-49x>0 -57x>0
Ясен перец, что неравенство верно только при отрицательных Х, а значит треугольника такого нарисовать нельзя. кажется, все верно посчитано) Ура!)
Рассмотрим треугольники BOC и DOA:
AO=0C и BO=OD- по условию;
<BOC = <DOA-как вертикальные;
треугольник ВОС = треугольнику DОА - по двум сторонам и углу между ними.
• В равных треугольниках углы, лежащие напротив равных сторон, равны.
<CBO лежит напротив ОС;
<ADO лежит напротив АО;
OC = AO следует <EBO = <ADO.
<CBO и <ADO - накрест лежащие углы при пересечении ВС и AD с секущей BD.
Раз <CBO=<ADO, то по признаку параллельности прямых получим, что вс|| AD. Что и требовалось доказать.