Высота прямоугольного треугольника, проведённая к гипотенузе, равна 9 см и делит гипотенузу на отрезки, которые относятся как 1 : 3. Найдите гипотенузу треугольника.
Начертим прямую а к ней строим перпендикулярную прямую. От точки пересечения прямых откладываем отрезок равной высоте треугольника таким образом получим вершину прямоугольного угла . дальше строим окружность с радиусом равной катету и центром в вершине прямоугольного угла. точкой пересечения окружности и прямой будет вершина другого угла треугольника. соединим центр окружности с этой точкой это будет заданный катет. дальше строим прямую перпендикулярную катету, через центр окружности. Точкой пересечения этой прямой и прямой построенной в самом начале задачи и будет третья вершина заданного треугольника.
Начертим прямую а к ней строим перпендикулярную прямую. От точки пересечения прямых откладываем отрезок равной высоте треугольника таким образом получим вершину прямоугольного угла . дальше строим окружность с радиусом равной катету и центром в вершине прямоугольного угла. точкой пересечения окружности и прямой будет вершина другого угла треугольника. соединим центр окружности с этой точкой это будет заданный катет. дальше строим прямую перпендикулярную катету, через центр окружности. Точкой пересечения этой прямой и прямой построенной в самом начале задачи и будет третья вершина заданного треугольника.
ответ:4 корня из 27
Объяснение:
за формулой 9^2 = х*3х; 81=3х^2; х^2=27; х = корень из 27
гипотенуза = 4 корня из 27